Expanded Environmental Assessment

For:

Millbrook Apartments

Village of Great Neck Nassau County, New York

May 2018

Cameron Engineering & Associates, LLP

TABLE OF CONTENTS

1.	EXI	ECUTIVE SUMMARY	1-1
	1.1.	PROJECT DESCRIPTION	1-1
		1.1.1. Background	1-1
		1.1.2. Purpose, Public Benefits, and Operation	1-1
		1.1.3. Location and Access	1-2
	1.2.	POTENTIAL IMPACTS AND PROPOSED MITIGATION	1-2
		1.2.1. Impact on Land	
		1.2.2. Impact on Water	
		1.2.3. Impact on Air	
		1.2.4. Impact on Plants and Animals	
		1.2.5. Impact on Agricultural Land Resources	
		1.2.6. Impact on Aesthetic Resources	
		1.2.7. Impact on Critical Environmental Areas	
		1.2.8. Impact on Transportation	
		1.2.9. Impact on Energy	
		1.2.10. Noise and Odor Impacts	
		1.2.11. Impact on Public Health	
		1.2.12. Impact on Growth and Character of Community or Neighborhood	
		1.2.12. Impact on Grown and Character of Commanity of Neighborhood	
	13	Conclusions	
2.		CONCLUSIONS	
4.		INTRODUCTION	
		LOCATION	
		SITE LAYOUT	
		APPROVAL PROCESS	
	2.4.	2.4.1. Village of Great Neck	
		2.4.1. Village of Great Neck	
		2.4.2. Great Neck water Foliation Control District	
		2.4.5. waler Authority of Great Neck North	
	25	Construction Schedule	
2		ALYSIS OF POTENTIAL ENVIRONMENTAL IMPACTS	
3.		IMPACT ON LAND	
	5.1.	3.1.1. Geology	
		3.1.2. Soils and Topography	
	2.0	3.1.3. Construction Impacts	
	3.2.	IMPACT ON WATER	
		3.2.1. Groundwater	
		3.2.2. Flooding and Flood Zones	
	2.2	3.2.3. Stormwater Collection, Treatment, and Recharge	
		IMPACT ON PLANTS AND ANIMALS	
		IMPACT ON AGRICULTURAL LAND RESOURCES	
		IMPACT ON AESTHETIC RESOURCES	
		IMPACT ON CRITICAL ENVIRONMENTAL AREAS	
	3.7.	IMPACT ON TRANSPORTATION	
		3.7.1. Traffic	
		3.7.2. Parking	
		NOISE AND ODOR IMPACTS	
		IMPACT ON PUBLIC HEALTH	
	3.10). IMPACT ON GROWTH AND CHARACTER OF COMMUNITY OR NEIGHBORHOOD	
		3.10.1. Land Use	
		3.10.2. Zoning	3-15

3.10.3. Growth-Inducing Aspects of the Proposed Project	. 3-22
3.10.4. Demand for Additional Community Services	. 3-22

TABLE OF TABLES

Table 2-1: Summary of Existing Site Layout	2-2
Table 2-2: Summary of Overall Proposed Site Layout	2-2
Table 3-1: Middle Neck Road Multifamily Incentive Overlay District Requirements	3-16
Table 3-2: Residence E (Apartments District) Zoning Requirements	3-18
Table 3-3: Public School-Age Children Projected for Millbrook Apartments	3-23
Table 3-4: Projected Water Use/Sewage Flow	3-24

TABLE OF FIGURES

(Figures are found at the end of each chapter)

Figure 2-1: Location/Aerial Map Figure 2-2: Site Logistics Plan Figure 2-3: Construction Schedule Figure 2-4: Existing Site with Demo Figure 2-5: Site Plan Figure 2-6: Zoning Analysis Figure 2-7: Site Grading and Drainage Plan Figure 2-8: Soil Erosion Control Plan Figure 2-9: Landscape Plan Figure 2-10: Photometric Plan Figure 2-11: Fire Truck Access Path Plan Figure 2-12: Parking Layout Plan Figure 2-13: North Building Layout and Elevations Figure 2-14: South Building Layout and Elevations Figure 2-15: West Buildings Layout and Elevations Figure 2-16: Aerial Photography Figure 3-1: Existing View from Middle Neck Road Figure 3-2: Existing View from Sidewalk (corner of Millbrook Court & Middle Neck Road) Figure 3-3: View from Rear of Property (NW Corner) Figure 3-4: View from North Parking Lot Figure 3-5: View from South Parking Lot

Figure 3-6: View from South Driveway

1. Executive Summary

1.1. Project Description

1.1.1. Background

The applicant proposes to modify an existing 119-unit apartment complex to remove 34 units¹ and add 101 units for a total of 186 residential units upon completion. 314 parking spaces would be provided, providing 100% of required parking for the new units and increasing the overall on-site parking ratio from 1.13 spaces per unit (existing conditions) to 1.69 spaces per unit (after completion). The property is located on Middle Neck Road between Old Mill Road and the southern boundary of the Village of Great Neck (Section 2, Block 354, Lot 138). The property is located in the Residence E or Apartment zoning district and will utilize incentives available within the Middle Neck Road Multifamily Incentive Overlay District (MNR-MIO). § 575-285 (B) of the Village of Great Neck Code describes the MNR-MIO district boundaries as follows: "The boundaries of said district, as shown on the Building Zone Map of the Village of Great Neck, shall be coterminous with the boundaries of the Residence E District."

This Expanded Environmental Assessment examines the existing conditions, potentially significant adverse impacts that might result from the proposed project and mitigation of the construction and operation of the proposed apartment building. A Full Environmental Assessment Form is provided in Appendix A.

1.1.2. Purpose, Public Benefits, and Operation

The site is currently developed with a 119-unit apartment complex (Millbrook Apartments). The purpose of the proposed project is to remove 34 of the existing units¹ and add an additional 101 units for a total of 186 residential units. The subject property is currently under rent-stabilization controls and will continue to provide rent-stabilized housing in accordance with all New York State Division of Housing and Community Renewal (DHCR) requirements. Out of the 85 existing units to remain, it is anticipated that approximately 80 (\pm) units will continue to be subject to DHCR rent-stabilization guidelines.

¹ A 3BR unit is created by combining two existing 1BR units and is included in post-demo parking calculation.

1.1.3. Location and Access

The project site is located on Middle Neck Road between Old Mill Road and the southern boundary of the Village of Great Neck in the Village of Great Neck, New York (Section 2, Block 354, Lot 138). The project site is 4.35 acres. Middle Neck Road is a major arterial, which serves as the primary access road to and from the Great Neck Peninsula. In addition, the project site is approximately 0.75 miles north of the Great Neck LIRR station. The N58 bus, a Nassau Inter County Express (NICE) bus serves the project site and provides quick access to the Great Neck LIRR station and downtown commercial area.

1.2. Potential Impacts and Proposed Mitigation

1.2.1. Impact on Land

Soils and Topography

Potential Impacts – The site is relatively flat. Stormwater runoff during and following construction could lead to site erosion and off-site sedimentation if not properly controlled.

Proposed Mitigation – See construction mitigation below.

Construction Impacts

Potential Impacts of Proposed Project – Like any construction project, the construction of Millbrook Apartments would have short-term environmental impacts. They could include soil erosion, noise, traffic disruption, and dust.

A. Pappajohn Company is the general contractor for this project and has prepared a Site Logistics Plan (Figure 2-2) detailing the two major phases of construction. The Site Logistics Plan has been designed to minimize potential impacts while the building is under construction. An overall construction schedule is also provided, which details the sequencing and duration of each phase of construction (Figure 2-3).

Proposed Mitigation – Throughout the construction process, all construction vehicles and materials will be stored on-site within the limits denoted by the temporary construction fencing. To accommodate the potential demand for off-site resident and contractor vehicle parking during construction, the applicant has initiated discussions with nearby religious institutions (Temple Beth-El and Shaare Zion) to provide off-site parking for resident and construction worker vehicles if on-site space becomes limited during construction.

A detailed Soil Erosion Control Plan has also been prepared (Figure 2-8). Erosion would be curtailed by the use of construction fencing with silt barriers, storm drain inlet filters and filter protection for new drywells on-site. The construction entrances would be stabilized with crushed stone to prevent soil and loose debris from being carried onto local roads. All construction-related erosion control measures would be removed during final landscaping

Based on Village of Great Neck construction activity regulations, weekday construction activities would be confined to the hours of 8 AM to 7 PM. Weekend construction activities would be restricted to the hours of 9 AM to 7 PM on Saturdays and holidays.

1.2.2. Impact on Water

Groundwater

Potential Impacts – Depth to groundwater ranges from approximately 50 feet below grade at the southern end of the site to approximately 30 feet at the northern end. Impacts to groundwater include increased withdrawals by the water authority and impacts from stormwater runoff (addressed in the following section). Water consumption by the proposed project is estimated at 47,400 gallons per day (see section on Utilities), which is approximately 35,900 gallons per day over existing use on the site. The proposed project may have a minor impact on ground water and would be mitigated by the measures detailed below.

Proposed Mitigation – Water conserving fixtures would be installed in the apartments and would reduce consumption of public water. Use of compost would conserve moisture in planters. Roof collection systems would return rainwater to the ground through the use of dry wells. Sanitary wastewater discharged from the apartments and would be connected to the public sewer system to protect on-site groundwater.

Stormwater

Potential Impacts – Site development would result in approximately 3.04 acres of impervious surfaces and 1.31 acres of pervious surfaces (an increase in impervious surface area of approximately percent (11%) compared to existing conditions).

Proposed Mitigation – The drainage system will be designed to handle an eight-inch rainfall event, providing approximately 1,020 linear feet/102,000 cubic feet of storage (1000.9 linear feet/100,090 cubic feet required).

1.2.3. Impact on Air

Potential Impacts of Proposed Project – Potential impacts to air quality are anticipated to be minimal.

Proposed Mitigation – No mitigation is proposed as no significant adverse impacts are anticipated.

1.2.4. Impact on Plants and Animals

Potential Impacts of Proposed Project – The proposed redevelopment would occur within an existing developed area.

Proposed Mitigation – No mitigation is proposed as no significant adverse impacts are anticipated.

1.2.5. Impact on Agricultural Land Resources

There are no agricultural land resources on the project site.

1.2.6. Impact on Aesthetic Resources

Potential Impacts of Proposed Project – The visual character of the site would change slightly as a result of development. The existing 119-unit apartment complex would be renovated to include 186 residential units. Additional landscaping will be installed, particularly along the property boundaries to enhance the aesthetics of the area. The proposed project would complement the other multi-family buildings in the surrounding community.

Proposed Mitigation – No mitigation is proposed as no significant adverse impacts are anticipated.

1.2.7. Impact on Critical Environmental Areas

There are no critical environmental areas on the project site.

1.2.8. Impact on Transportation

Potential Impacts of Proposed Project – The highway capacity analysis of the study intersections shows that the development of the subject property will have no perceptible impact to the level of service on the surrounding roadway network, with the exception of the North Site Access.

Proposed Mitigation – As part of the redevelopment of this project the North Site Access will become the main exit for the complex and the South Site Access will become the main entrance for the complex. The southbound stop line on Middle Neck Road, at the intersection with Wooleys Lane, is located approximately 65 feet south of the driveway. Approximately six vehicles can queue at the signal (within the two southbound lanes) before blocking the site driveway. It is recommended that "Do Not Block The Box" pavement markings and signage be installed at this location.

1.2.9. Impact on Energy

Potential Impacts of Proposed Project – A slight increase in energy consumption would occur as a result of the development.

Proposed Mitigation – Modern energy efficient building materials and energy conservation would be incorporated into the new building.

1.2.10. Noise and Odor Impacts

Potential Impacts of Proposed Project – Any noise or odors generated by the proposed apartment complex would be similar to that generated by existing apartment complexes in the area.

Proposed Mitigation – No mitigation is proposed as no significant adverse impacts are anticipated.

1.2.11. Impact on Public Health

There would be no impact on public health from the proposed apartment building.

1.2.12. Impact on Growth and Character of Community or Neighborhood

Potential Impacts – The redevelopment of an existing apartment complex would have minimal impacts on area properties as it would be similar to other multifamily properties in the immediate area. Adjacent properties comprise multi-family residential buildings to the north and east, institutional buildings to the south and east, and single-family housing to the west.

The subject property is zoned Residence E or Apartment District and will utilize incentives available within the Middle Neck Road Multifamily Incentive Overlay District (MNR-MIO). Many of the buildings on Middle Neck Road and within the

vicinity of the project site are multi-family and institutional buildings that have been developed within the Residence E or Apartment zoning district.

Proposed Mitigation – No mitigation is proposed as no significant adverse impacts are anticipated.

1.2.13. Need for Additional Community Services

Emergency Services

Potential Impacts of Proposed Project – A minor increase might be expected in the demand for emergency medical services, fire and police protection due to the net increase of 67 residential units.

Proposed Mitigation – No mitigation is proposed as no significant adverse impacts are anticipated.

Schools

Potential Impacts of Proposed Project – Based on published rates, Millbrook Apartments could become the home of approximately 29 school-aged children attending public schools (an estimated net increase of 19 students).

Proposed Mitigation – None required. A net increase of 19 new students would represent an increase of less than three-tenths of one percent in enrollment (district enrollment for the 2015-2016 school year was 6,394 in grades K-12). With a very small number of students projected, new costs would be minimal as there should not be a need for additional classrooms or teachers.

<u>Utilities</u>

Potential Impacts of Proposed Project – Public supply water usage for the proposed redevelopment project is estimated to be 47,400 gallons per day, which is a net increase of approximately 35,900 gallons per day. Wastewater flow is similarly estimated at 47,400 gallons per day, a net increase of approximately 35,900 gallons per day. Letters requesting water and sewer availability were sent to the Water Authority of Great Neck North and the Great Neck Water Pollution Control District (Appendix B). It is anticipated that both the Water Authority of Great Neck Water Pollution Control District have sufficient resources to provide water and sewer service to the proposed project.

For the proposed project, solid waste production is estimated at four (4) pounds/bedroom per day.² For the proposed project, this would total approximately 1,152 pounds per day, a net increase of 512 pounds per day over existing conditions. Each building will have a garbage chute leading to a compactor. Solid waste would then be collected by a private carter and disposed of at a permitted solid waste management facility.

Proposed Mitigation – No mitigation is proposed as no significant adverse impacts are anticipated.

1.3. Conclusions

Redevelopment of the subject property as a residential apartment building would have no significant adverse environmental impacts on the site and surrounding area. The proposed apartment complex would be in keeping with the numerous other multi-family buildings in the area. The proposed apartments would introduce new or transplanted residents to the community that would patronize area businesses and contribute to the tax base. In addition, the subject property will continue to provide rent-stabilized housing, helping to maintain affordable multifamily housing within the Great Neck community.

² Technical Bulletin #85-6, Basic Data: Solid Waste Amounts, Composition and Management Systems, National Solid Waste Management Association, October 1985.

2. Project Description

2.1. Introduction

The applicant proposes to redevelop an existing 119-unit apartment complex by removing 34 units³ and adding 101 units for a total of 186 residential units. The project site is a 4.35-acre property located on Middle Neck Road in the Village of Great Neck, New York. The site address is 240-250 Middle Neck Road (Section 2, Block 354, Lot 138). The proposed project is located within the Residence E or Apartment zoning district and will utilize incentives available within the Middle Neck Road Multifamily Incentive Overlay District (MNR-MIO).

A Location/Aerial Map is provided in Figure 2-1. The proposed project would be consistent with surrounding land uses. The environmental impacts associated with the proposed project are not expected to be significant and are described below.

2.2. Location

The project site is located on Middle Neck Road between Old Mill Road and the southern boundary of the Village of Great Neck. The site address is 240-250 Middle Neck Road and comprises one tax lot (Section 2, Block 354, Lot 138) totaling approximately 4.35 acres (see Figure 2-1).

2.3. Site Layout

The proposed project will result in a total of 186 residential units – a net increase of 67 units. Overall lot size is 4.35 acres (189,481.6 square feet) with the proposed buildings totaling 1.66 acres (72,157.7 square feet) – a lot coverage of 38.1% (up to 60% permitted as per VGN Code §575-111). Building footprints for the existing site and proposed project are displayed in the tables below. Table 2-1 provides of summary of the existing site layout and Table 2-2 provides the site layout for the proposed project.

³ A 3BR unit is created by combining two existing 1BR units and is included in post-demo parking calculation

Building	Lot Coverage (SF)	Studio	1 BR	2 BR
Ex. Building A	10,486	4	16	8
Ex. Building B	5,583	-	10	5
Ex. Building C	15,250	8	20	12
Ex. Building D	6,442	-	8	8
Ex. Building E	7,621	4	8	8
Existing Buildings Total	45,382	16	62	41

 Table 2-1: Summary of Existing Site Layout

Table 2-2: Summary of Overall Proposed Site Layout

Building	Proposed Project Lot Coverage (SF)	1 BR/Studio	2 BR	3 BR	Total Units
Prop. Building North	23,550.6	32	11	16	59
Prop. Building South	7,977.0	11	16	-	27
Prop. Building West	7,492.0	2	13	-	15
Prop. West Garage Stair Bulkhead	400.0	-	-	-	-
Proposed New Buildings Total	39,419.6	45	40	16	101
Existing Buildings Total	32,733.1	56	28	1*	85
OVERALL PROJECT TOTAL	72,152.7	101	68	17	186

*Note: 1 3 BR unit will be created from units within Existing Building A; however for parking/zoning calculation purposes, the 3 BR unit will be counted as a new unit.

The existing buildings to remain on site (Existing Buildings A,C,D and E) are all two-story brick structures approximately 23 feet in height from average grade to the roof. The proposed new buildings comprise three and four-story buildings with a maximum height of 42 feet.

There will be a 22-foot, 7-inch front yard setback (increase of more than four (4) feet over existing conditions), 25-foot, 7-inch side yard setbacks, and 29-foot rear yard setback (same as existing conditions). The proposed setbacks are in compliance with VGN Code §575-112/113/114.

Overall density for the proposed project is approximately 42.8 dwelling units (du) per acre (186 units/4.35 acre site), which falls below the 43 du/acre maximum permitted in VGN Code §575-(110).

Upon completion, there will be 101 one-bedroom units, 68 two-bedroom units and 17 three-bedroom units. The applicant intends to retain existing site staff, including a site superintendent.

The applicant is providing 314 off-street parking spaces, with 293 spaces located within on-site parking garages and 21 on-grade parking spaces. The existing apartment complex provides approximately 1.13 parking spaces for each apartment unit (134 parking spaces/119 units). Upon completion of the project the site will provide 1.69 parking spaces per unit (314 parking spaces/186 units) – providing 100% of the required parking for the 101 new units. The redevelopment of the site is anticipated to decrease on street parking demand in proximity to the site.

Plans for the proposed project are provided in Figure 2-2 - Figure 2-15. Aerial photographs and renderings of the proposed project are provided in Figure 2-16.

2.4. Approval Process

2.4.1. Village of Great Neck

The following approvals would be required:

1. Board of Trustees (incentive zoning, tandem parking, parking waiver and site plan review)

- 2. SEQRA compliance
- 3. Building Permit
- 4. Plumbing
- 5. Sewer Connection
- 6. Construction Dumpsters
- 7. Signs
- 8. Street Openings
- 9. Curb Cuts
- 10. Sidewalk Openings
- 12. Tree Removals

2.4.2. Great Neck Water Pollution Control District

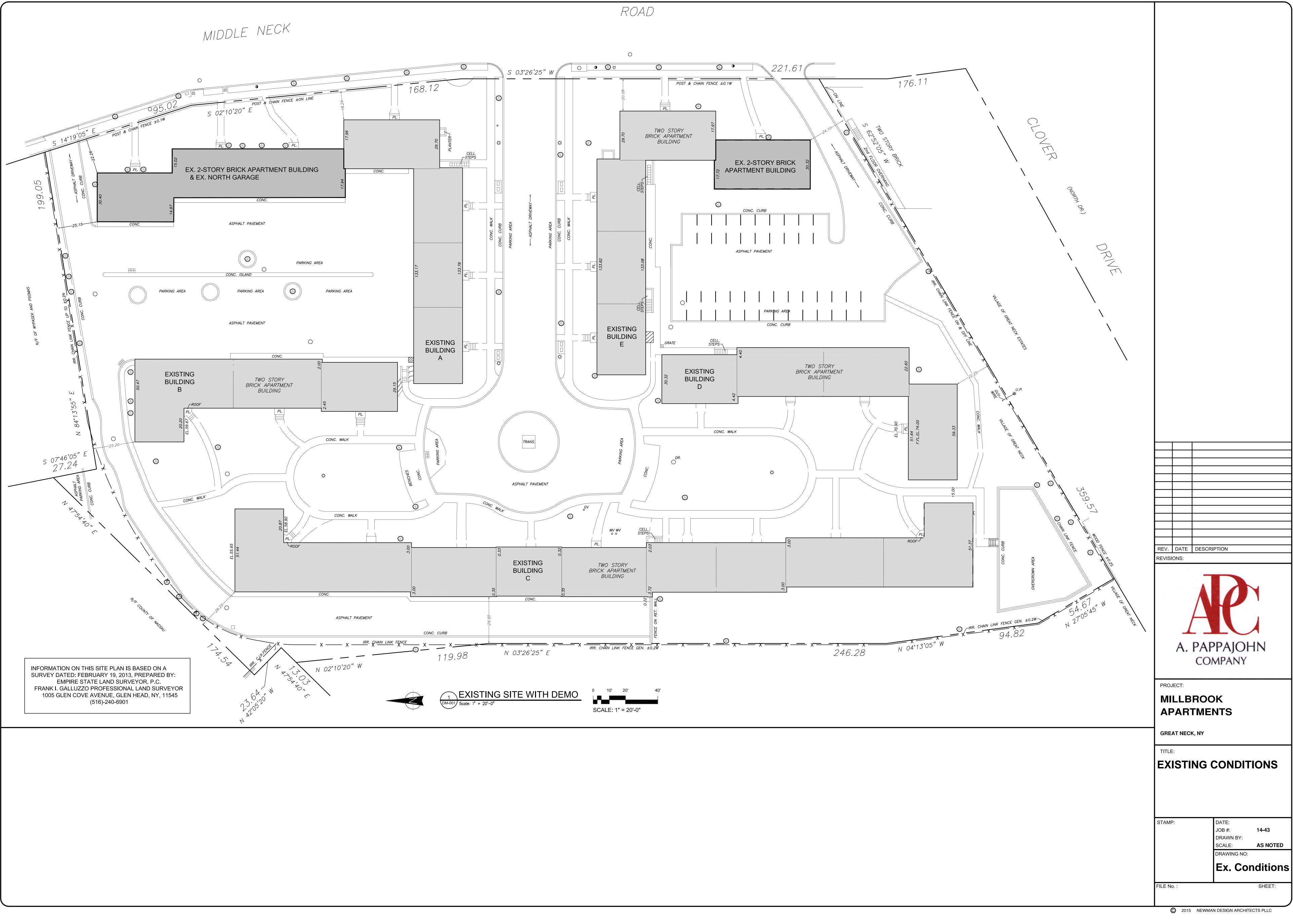
A sewer connection would be required from the Great Neck Water Pollution Control District. Letters requesting water availability were sent on March 24, 2015 and July 25, 2017. Copies are included in Appendix B. It is anticipated that the Great Neck Water Pollution Control District has sufficient capacity to accept flow from the proposed project.

2.4.3. Water Authority of Great Neck North

A letter of water availability is required from the Water Authority of Great Neck North. Letters requesting water availability were sent on March 24, 2015, June 29, 2016 and July 25, 2017. Copies included in Appendix B. It is anticipated that the Water Authority has sufficient resources to provide water service to the proposed project. The applicant will pay for the design and construction of the connection to the Water Authority. Water use would be moderated through the use of the water conservation methods described below in Section 3.2.

2.4.4. Nassau County

The proposed project plans would be subject to review by the Nassau County Department of Public Works Pursuant to Section 239-F of the General Municipal Law. The proposed project would be subject to review by the Nassau County Planning Commission. New York State General Municipal Law Section 239-M requires that municipalities refer projects that are located within 500 feet of a County right-of-way (Middle Neck Road) to the Nassau County Planning Commission for its recommendation. In addition, the Nassau County Department of Health must approve the proposed water and sewer connections.


2.5. Construction Schedule

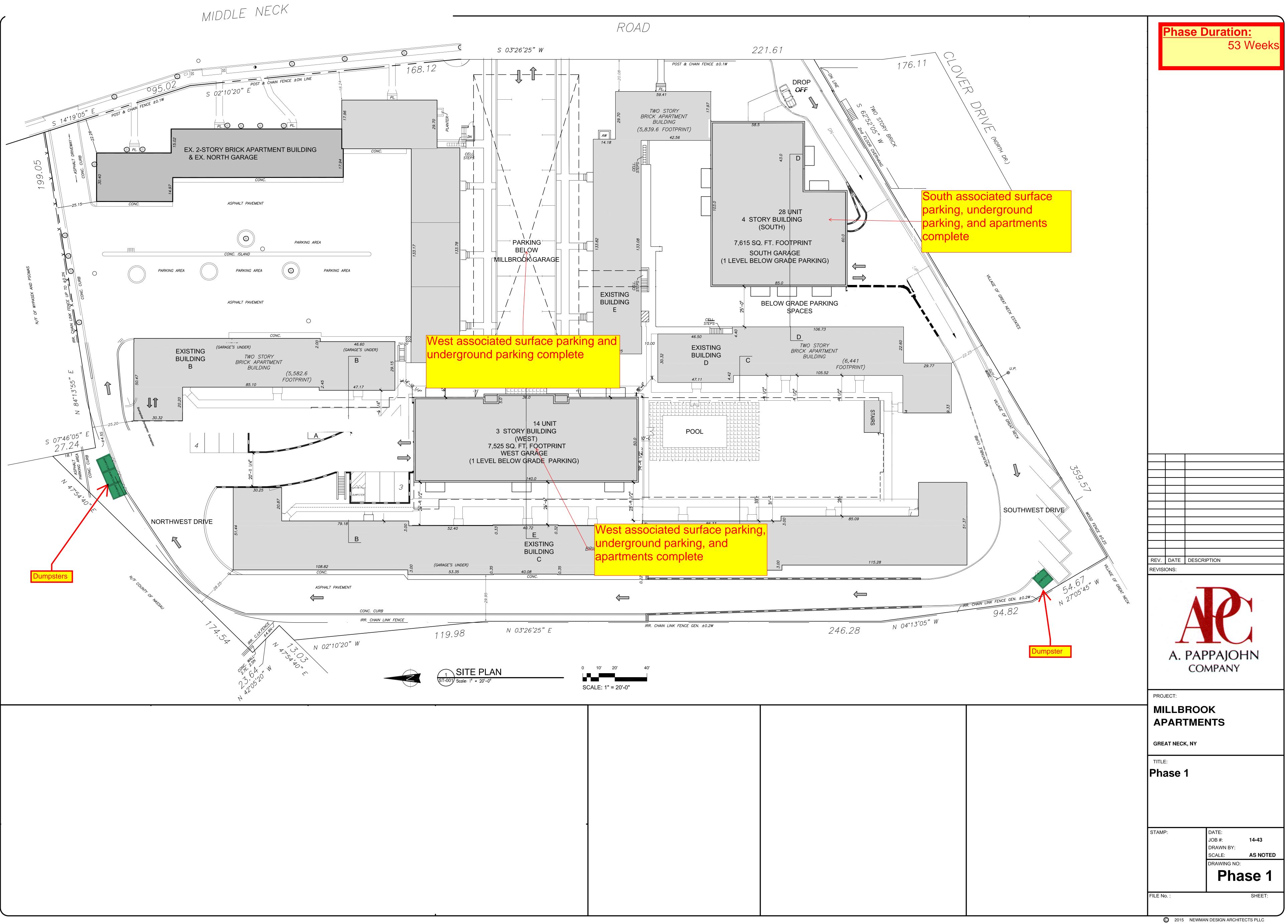
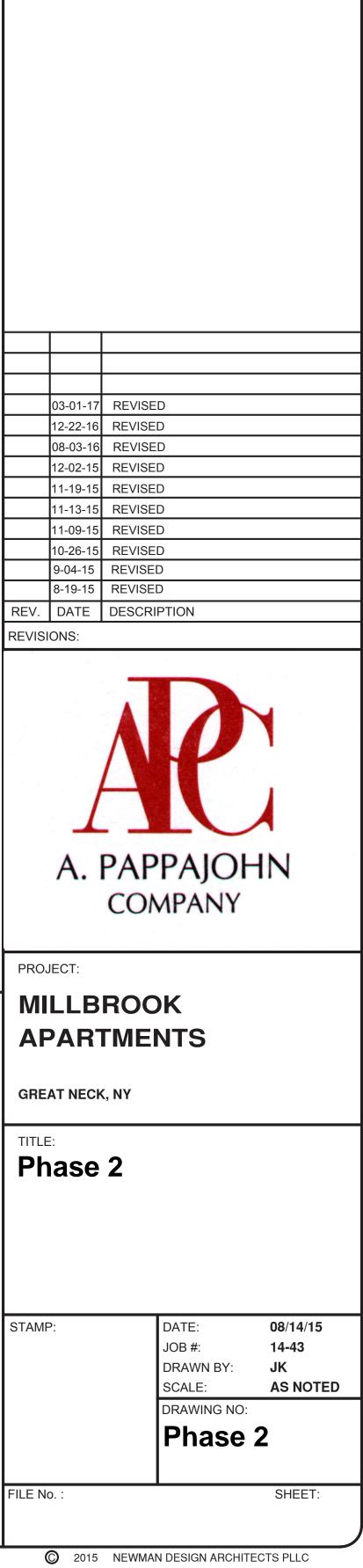
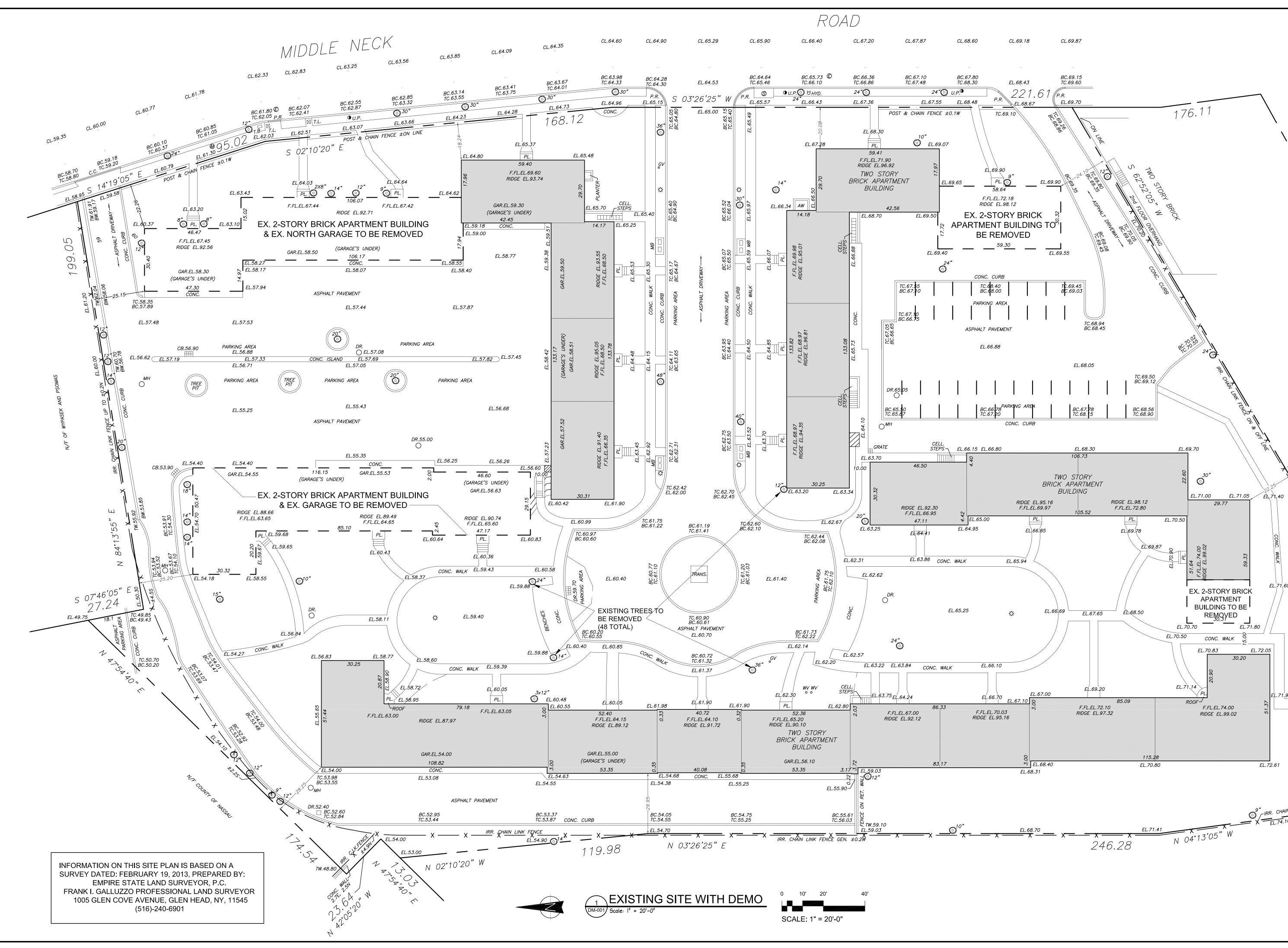
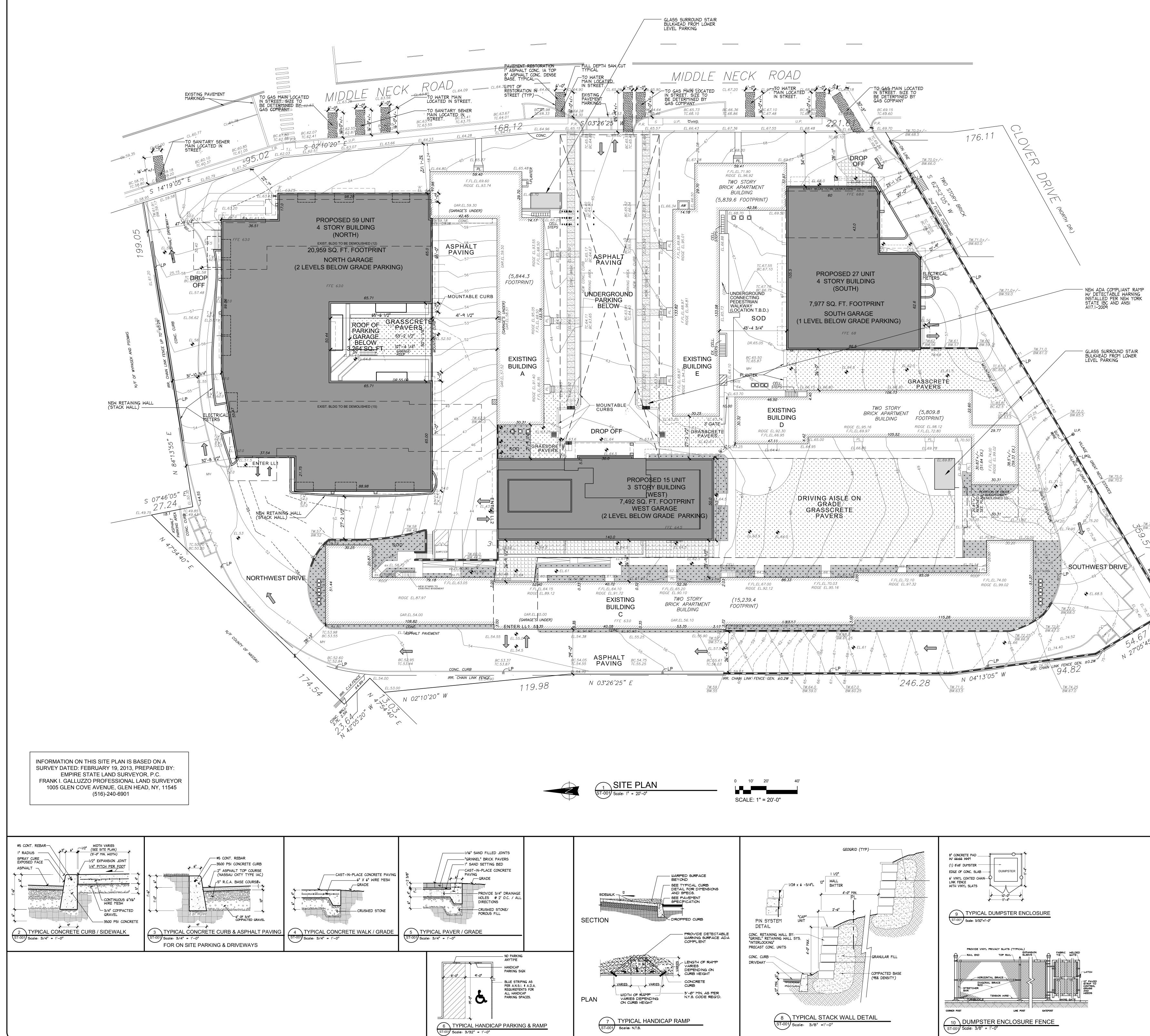

Construction is estimated to extend approximately 27 months, or two years, subject to weather-related delays and other unforeseen events. Based on Village of Great Neck construction activity regulations, weekday construction activities would be confined to the hours of 8 AM to 7 PM. Weekend construction activities would be restricted to the hours of 9 AM to 7 PM on Saturdays and Holidays.

Figure 2-1: Location/Aerial Map Figure 2-2: Site Logistics Plan **Figure 2-3: Construction Schedule** Figure 2-4: Existing Site with Demo Figure 2-5: Site Plan Figure 2-6: Zoning Analysis Figure 2-7: Site Grading and Drainage Plan Figure 2-8: Soil Erosion Control Plan Figure 2-9: Landscape Plan Figure 2-10: Photometric Plan Figure 2-11: Fire Truck Access Path Plan Figure 2-12: Parking Layout Plan Figure 2-13: North Building Layout and Elevations Figure 2-14: South Building Layout and Elevations Figure 2-15: West Buildings Layout and Elevations **Figure 2-16: Aerial Photography**







Millbrook Apartments Proposed Construction Schedule
Overall Construction Period: Approximately 27 months

 Image: Note of the state of the st

CLOVER COVER	
Mutane or order mean mean test	
EL. 74.20 EL. 75.20 10^{-6} 10^{-7} 30^{-7} 5^{-7	
94.82	Image: Market
	REVISIONS:
	MILLBROOK APARTMENTS 240-250 MIDDLE NECK ROAD GREAT NECK, NY 11023 TITLE: EXISTING SITE WITH DEMO BUILDING DEMO STAMP: DATE: 9/04/15 JOB #: 14-43
	JOB #: 14-43 DRAWN BY: AG SCALE: AS NOTED DRAWING NO: AD-001 FILE No. : SHEET:

SITE PLAN LEGEND					
	INDICATES PROPERTY LINE				
● ^{16.0'}	INDICATES SPOT ELEVATION				
	INDICATES NEW CURB				
	INDICATES NEW RETAINING WALL				
	INDICATES PROPOSED CONCRETE WALK				
11111111111111111	INDICATES PROPOSED STACK WALL RETAINING WALL				
TC 109.0' BC 108.5'	TOP OF CONCRETE BOTTOM OF CONCRETE				
☑ L.P.	INDICATES POLE MOUNTED LIGHT				
G	INDICATES HANDICAP PARKING SPACE				
EE	INDICATES ELECTRICAL LINE				
GG	INDICATES GAS MAIN				
ss	INDICATES SANITARY SEWER PIPING				
	BRICK PAVER WALK				
ଟ <i>मYD</i> .	EXISTING FIRE HYDRANT				

	05-23-18	ISSUED TO VGN and NASSAU COUNTY PLANNING COMMISSION
	03-05-18	
	12-18-17	REVISED
	07-20-17	REVISED
	05-19-17	REVISED
	03-13-17	REVISED
	03-01-17	REVISED
	12-22-16	REVISED
	08-03-16	REVISED
	12-02-15	REVISED
	11-19-15	REVISED
	11-13-15	REVISED
	11-09-15	REVISED
	10-26-15	REVISED
	9-04-15	REVISED
	8-19-15	REVISED
REV.	DATE	DESCRIPTION

REVISIONS:

ARCHITECTURE • URBAN PLANNING NEWMAN DESIGN ARCHITECTS PLLC 210 West Rogues Path

Cold Spring Hills, NY 11743 TEL: 212.673.3110 • TEL: 631.673.3111 • FAX: 631.673.2031 www.ndarchitects.com

PROJECT:

MILLBROOK **APARTMENTS** 240-250 MIDDLE NECK ROAD

GREAT NECK, NY 11023


SITE PLAN

TITLE:

FILE No. :

STAMP:	DATE:	08/14/15
	JOB #:	14-43
	DRAWN BY:	AG
	SCALE:	AS NOTED
	DRAWING NO:	
	ST-00)1

SHEET:

LO	T COVERAGE					PARKING CALCULATIONS
	ING BUILDINGS					REQUIRED PARKING PER UNIT MIX
EX. BLDG. A= $5,844.3$ SQ. FT.EX. BLDG. C= $15,239.4$ SQ. FT.EX. BLDG. D= $5,809.8$ SQ. FT.EX. BLDG. E= $5,839.6$ SQ. FT.TOTAL= $32,733.1$ SQ. FT.PROPOSED BUILDINGS (LOT COVERAGE) NORTH= $23,550.6$ SQ. FT.					EXISTING BUILDINGS 14 - STUDIO = x 2 SPACES = 28 SPACES 42 - 1 BEDROOM = x 2 SPACES = 84 SPACES	
					$ \begin{array}{c} $	
SOUTH = $7,977.0$ SQ. FT. WEST = $7,492.0$ SQ. FT. WEST GARAGE STAIR BULKHEAD = 400.0 SQ. FT.					NORTH BUILDING 32 - 1 BEDROOM = x 2 SPACES = 64 SPACES	
TOTAI		= 39,419.6 \$				11 - 2 BEDROOM = x 2 SPACES =22 SPACES16 - 3 BEDROOM = x 3 SPACES =48 SPACES
	_ = 72,152.7 SQ. FT. / 189, PROPOSED < 60% MAXI		(4.349 ACR	ES)		59 UNITS 134 SPACES SOUTH BUILDING 11 - 1 BEDROOM = x 2 SPACES = 22 SPACES
						$\frac{300 \text{ IT BUILDING}}{16 - 2 \text{ BEDROOM} = x 2 \text{ SPACES} = 32 \text{ SPACES}}{27 \text{ UNITS}}$
UNI	T MIX TABLE	S S				WEST BUILDING2 - 1 BEDROOM = x 2 SPACES =4 SPACES13 - 2 BEDROOM = x 2 SPACES =26 SPACES
	TING BUILDINGS					15 UNITS 30 SPACES
_	TOTAL EXISTING					101 NEW UNITS 218 NEW SPAC
	S 16	1B 62	2B 41	3B 0	TOTAL 119	TOTAL EXISTING & PROPOSED PARKING REQUIRED
	10	02	41	0	113	EXISTING BUILDINGS 171 SPACES PROPOSED BUILDINGS 218 SPACES
	JNITS TO BE REN BLDG. S	/IOVED 1B	2B	3B	TOTAL	TOTAL REQUIRED 389 SPCAES > 314 PROVIDED (75 SPA
	E 0 A 2	0 7	4		4 13	PARKING PROVIDED BY BUILDING: NORTH GARAGE = 116 SPACES SOUTH GARAGE = 6 SPACES 2
	B 0	10	5 0		15	WEST GARAGE = 150 SPACES MILLBROOK COURT = 10 SPACES NORTHWEST DRIVE = 6 SPACES
	D 0 SUB TOTAL 2	19	13		34	SOUTHWEST DRIVE = 5 SPACES EX. BLDG. A = 2 SPACES
\sim V		1				$\begin{cases} \frac{\text{EX. BLDG. C}}{\text{TOTAL}} = 314 \text{ SPACES PROVIDED} \end{cases}$
	TOTAL EXISTING	1B	2B	3B	TOTAL	<pre>{ REQUIRED H.C. PARKING PER UNIT MIX (INCLUDED IN REQ'D PARKING COUNT)</pre>
* \ \ 2	BEDROOM IS CREATED		28 TWO EXIST	1 * ING 1 BR UI	85 NITS AND IS	IBC CODE REQUIREMENT = 2% OF TOTAL UNITS IN A BUILDING
INC	LUDED IN THE POST-DE	MO PARKING CA				NORTH BUILDING 59 UNITS X 2% = $1.18 = 2$ H.C. SPACES REQ'D - 2 H.C. SPACES SOUTH BUILDING 27 UNITS X 2% = $.54 = 1$ H.C. SPACE REQ'D - 2 H.C. SPACE
						SOUTH BUILDING27 UNITS X 2% = .54 = 1 H.C. SPACE REQ'D - 2 H.C. SPACEWEST BUILDING15 UNITS X 2% = .3 = 1 H.C. SPACE REQ'D - 2 H.C. SPACE
	JNIT MIX - NORTI	1B	2B	3B	TOTAL	4 H.C. SPACES REQ'D 6 H.C. SPACES PROVIDED
	1 2	8 8	2 3	4	14 15	
	3 4	8	3	4 4	15	
S	GUB-TOTAL	32	3 11	16	59	REQUIRED PARKING - RATIO CALCULATION
[ι	JNIT MIX - SOUTI					EXISTING CONDITIONS: 119 UNITS
F	LOOR S	1B 2	2B 4	3B -	TOTAL 6	 134 SPACES: [(40 NORTH GARAGE SPACES + 22 WEST GARAGE SPACES 62 GARAGE SPACES + 72 ON GRADE SPACES]
	2 3	3	4	-	7	EXISTING RATIO: 134 SPACES / 119 UNITS = 1.126 119 UNITS - 34 DEMO UNITS = 85 EXISTING UNITS TO REMAIN
	4	<u> </u>	4	-	7	REQUIRED PARKING: 85 EXISTING UNITS TO REMAIN x 1.126 = 96 SPACES REQUIRED
	SUB-TOTAL		16		21	101 NEW UNITS 218 SPACES REQUIRED 314 SPACES REQUIRED
	JNIT MIX - WEST LOOR S	BLDG. 1B	2B	3B	TOTAL	
	1 2	- 1	3 5	-	3 6	
C	3 SUB-TOTAL	1 2	5 13	-	6 15	
	TOTAL S	1B 45	2B 40	3B 16	TOTAL 101	
ΓΟΤΑΙ	_ EXISTING & PR	OPOSEDII	NITS			
	S	1B	2B	3B		
	TOTAL EX. TO REMAIN 14		28	1	85	
٦		45	40	16	101	
	TOTAL 14	87	68	17	186	
	DROOM MIX					
	<u>ING BUILDING (A</u> S - 14	FTER DEM	DLITION	<u>1)</u>		
	1B - 42 2B - 56 (28 x 2)		, .			
-	3B - 3 (1 x 3)		11 <u></u>	5 BEDR	OOMS	
	TOTAL = 115 BEE	UKUUNIS 				
PROP	OSED BUILDING	<u>S</u>				
	1B - 32					
-	2B - 22 (11 x 2) 3B - 48 (16 x 3)					
	102 BEDROOMS					
	1B - 11		— 173	3 BEDR	OOMS	
-	2B - 32 (16 x 2) 43 BEDROOMS					
WEST						
	1B - 2 2B - <u>26 (13 x 2)</u>					
-						
-	28 BEDROOMS					

ZON	ING ANALYSIS		
VILLAGE	OF GREAT NECK		-
TAX SECT	.: 2 TAX BLOCK: 354 TAX LOT(S): 138		
RESIDEN	CE 'E'		
SECTION	DESCRIPTION	COMPLIES/(MIDDLE NECK ROAD MULTI-FAMILY INCENTIVE OVERLAY DISTRICT) (MNR-MIO)	
575-106	HEIGHT MULTI-FAMILY 31 FEET 	4 STORIES/42' - MNR-MIO - COMPLIES	
575-107	LOT SIZE • MINIMUM 20,000 SQ. FT.	+/-189, 481 SQ. FT COMPLIES	
575-109 575-110	FLOOR AREA FOR MULTI-FAMILYMINIMUM UNIT SIZE 600 SQ. FT.DENSITY	1 BEDROOM MIN. 750 SF - COMPLIES	
	 MAX 43 D.U./ACRE (MULTI-FAMILY) 43 x 4.349 = 187 D.U. 	186/4.349 = 42.8/ACRE - COMPLIES	
575-111 60% LOT / 575-112	BUILDING AREA (FOOTPRINT) AREA FRONT YARDS	72,261.8 SQ. FT./189,481.6 = 38.1% - COMPLIES	
575-112	 15' FROM PROPERTY LINE & 21' FROM CURB 	18' EXISTING, 22'-7" PROPOSED - COMPLIES	
575-113	SIDE YARDS • 10' MINIMUM SIDE YARD	25'-7" PROPOSED - COMPLIES	
575-114 575-115	REAR YARDS 25' MINIMUM REAR YARD DISTANCE BETWEEN BUILDINGS	29' EXIST - (NO CHANGE) - COMPLIES	
	 10' MINIMUM SEPARATION 2' ENCROACHMENTS WITHIN 10' DISTANCE ALLO (NOT LESS THAN 8' FT.) 	0' NEW TO EXISTING WED (SAME AS EXISTING CONDITIONS)	
575-115.2 PARKING	LANDSCAPING BUFFER - PROVIDE	- COMPLIES	
575-155 TAN	PARKING WITH RESIDENCE DISTRICTS MULTI-FAMILY: 2 SPACES/1 BEDROOM & 2 BEDROOM UNITS 3 SPACES/3 BEDROOM OR MORE UNITS IDEM - ACCEPTABLE WITH BOARD OF TRUSTEE APP KING SPACE SIZE: 9 X 19	2	
	9 X 19 MINIMUM 22' DRIVING AISLE		
			Los on to REVISED- ISSUED TO VGN and NASSA
			05-23-18 REVISED- ISSUED TO VGN and NASSA 05-23-18 COUNTY PLANNING COMMISSION 5/17/18 REV.
			5/16/18REVISED- RE-ISSUED TO V.G.N.03-5-18REVISED
			05-19-17 REVISED 08-03-16 REVISED
			12-02-15 REVISED 11-19-15 REVISED
			11-13-15 REVISED 11-09-15 REVISED
			10-26-15 REVISED
			9-04-15 REVISED 8-19-15 REVISED
			REV. DATE DESCRIPTION
			REVISIONS:

WE HEREBY CERTIFY THAT THE PROPOSED DEVELOPMENT COMPLIES WITH THE ZONING REQUIREMENTS IN THE RESIDENCE "E" DISTRICT, EXCEPT WHERE INDICATED IN THE ZONING ANALYSIS.

MITCHELL D. NEWMAN, A.I.A.

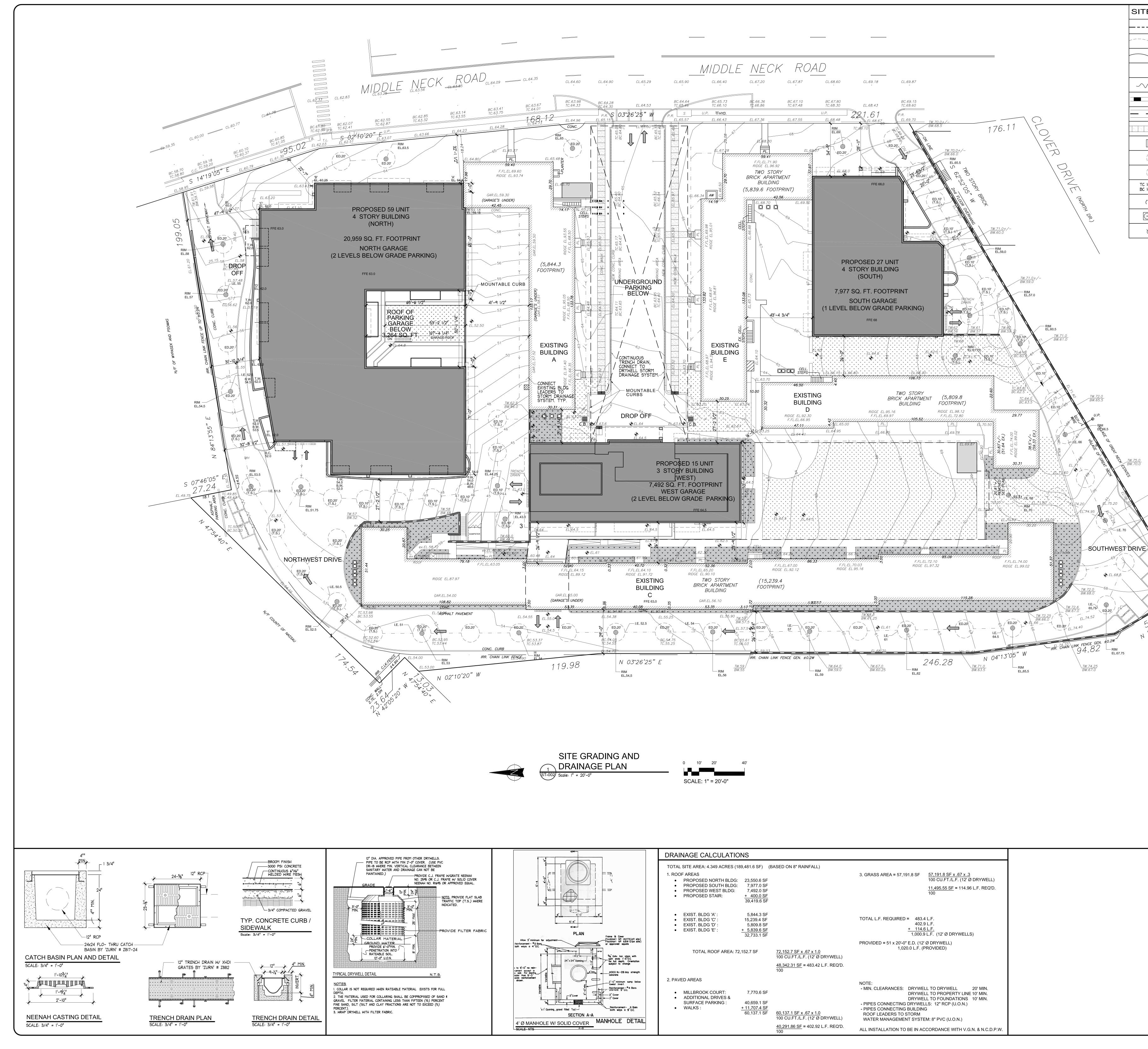
NOTE: APPLICANT TO FILE A STORM WATER POLLUTION PLAN AND NOTICE OF INTENT WITH N.Y.S. DEPARTMENT OF ENVIRONMENTAL CONSERVATION.

\triangle	5/17/18	REV.
Λ	5/16/18	REVISED- RE-ISSUED TO V.G.N.
	03-5-18	REVISED
	05-19-17	REVISED
	08-03-16	REVISED
	12-02-15	REVISED
	11-19-15	REVISED
	11-13-15	REVISED
	11-09-15	REVISED
	10-26-15	REVISED
	9-04-15	REVISED
	8-19-15	REVISED
REV.	DATE	DESCRIPTION
REVISI	ONS:	

ARCHITECTURE • URBAN PLANNING TEL: 212.673.3110 • TEL: 631.673.3111 • FAX: 631.673.2031 www.ndarchitects.com

PROJECT:

MILLBROOK **APARTMENTS** 240-250 MIDDLE NECK ROAD GREAT NECK, NY 11023


TITLE:

FILE No. :

ZONING ANALYSIS

D:
AS NOTED
AG
14-43
08/14/15

SHEET:

SITE PLAN	ILEGEND
	INDICATES PROPERTY LINE
\6. ⁰	INDICATES EXISTING GRADE CONTOUR
16.0'	INDICATES PROPOSED GRADE CONTOUR
↓ ^{16.0'}	INDICATES SPOT ELEVATION
	INDICATES DIRECTION OF SURFACE DRAINAGE
	INDICATES NEW CURB
	INDICATES NEW RETAINING WALL
	INDICATES PROPOSED CONCRETE WALK
	INDICATES CATCH BASIN
	INDICATES DRYWELL w/ GRATED CAST IRON COVER TO GRADE
(\bigcirc)	INDICATES DRYWELL w/ SOLID CAST IRON COVER TO GRADE
TC 109.0' BC 108.5'	TOP OF CURB BOTTOM OF CONCRETE
(T.S.)	CONCRETE TOP SLAP / TRAFFIC TOP FOR DRYWELLS IN LIEU OF DOME
L.P.	INDICATES POLE MOUNTED LIGHT
OHYD.	EXISTING FIRE HYDRANT

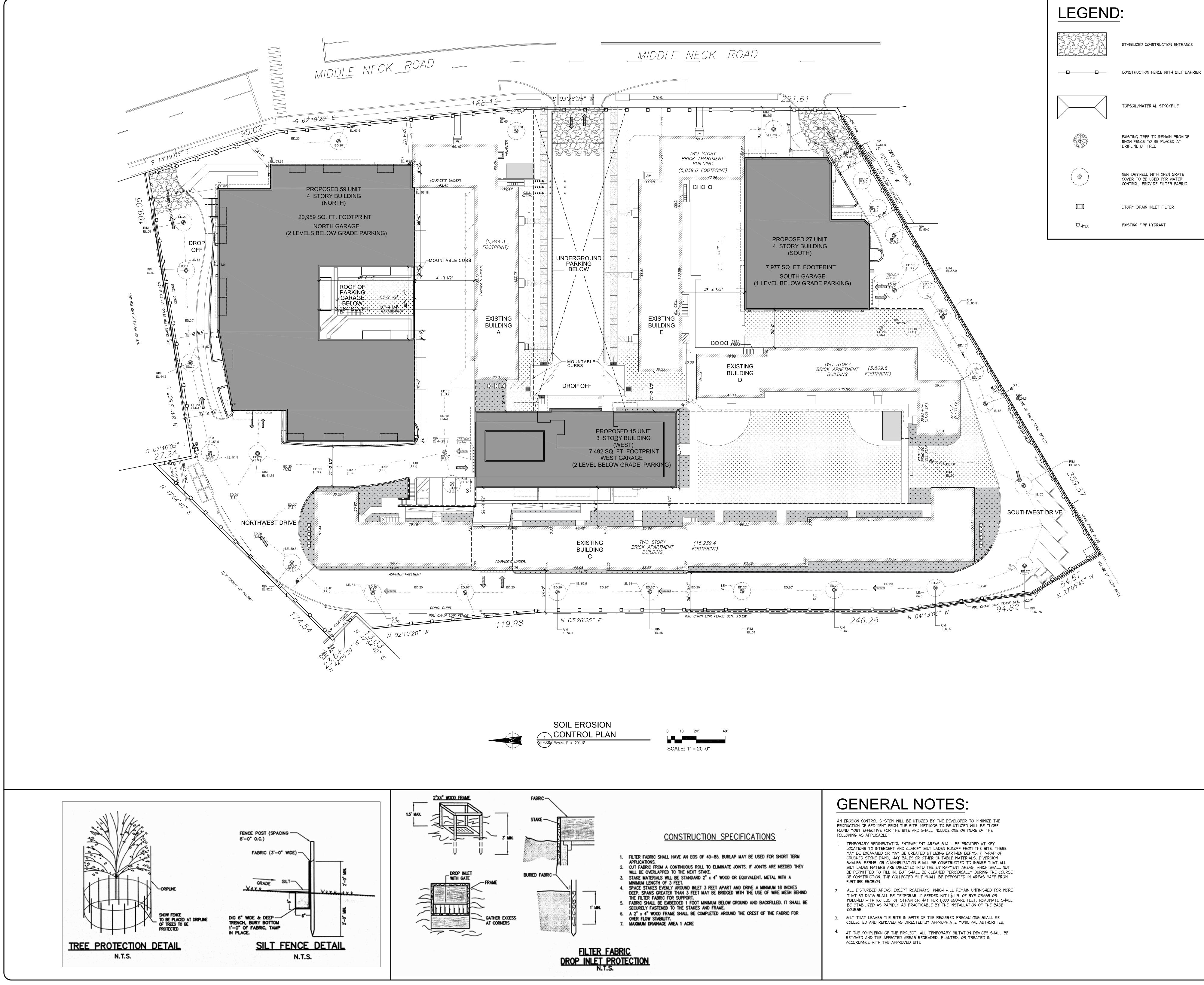
EL 70.5

	05-23-18	ISSUED TO VGN and NASSAU COUNTY PLANNING COMMISSION
	03-5-18	REVISED
	12-18-17	REVISED
	07-20-17	REVISED
	05-19-17	REVISED
	03-13-17	REVISED
	03-01-17	REVISED
	08-03-16	REVISED
	12-02-15	REVISED
	11-19-15	REVISED
	11-13-15	REVISED
	11-09-15	REVISED
	10-26-15	REVISED
	9-04-15	REVISED
	8-19-15	REVISED
REV.	DATE	DESCRIPTION

ARCHITECTURE • URBAN PLANNING NEWMAN DESIGN ARCHITECTS PLLC 210 West Rogues Path

Cold Spring Hills, NY 11743 TEL: 212.673.3110 • TEL: 631.673.3111 • FAX: 631.673.2031 www.ndarchitects.com

PROJECT:


FILE No. :

MILLBROOK **APARTMENTS** 240-250 MIDDLE NECK ROAD

GREAT NECK, NY 11023 TITLE:

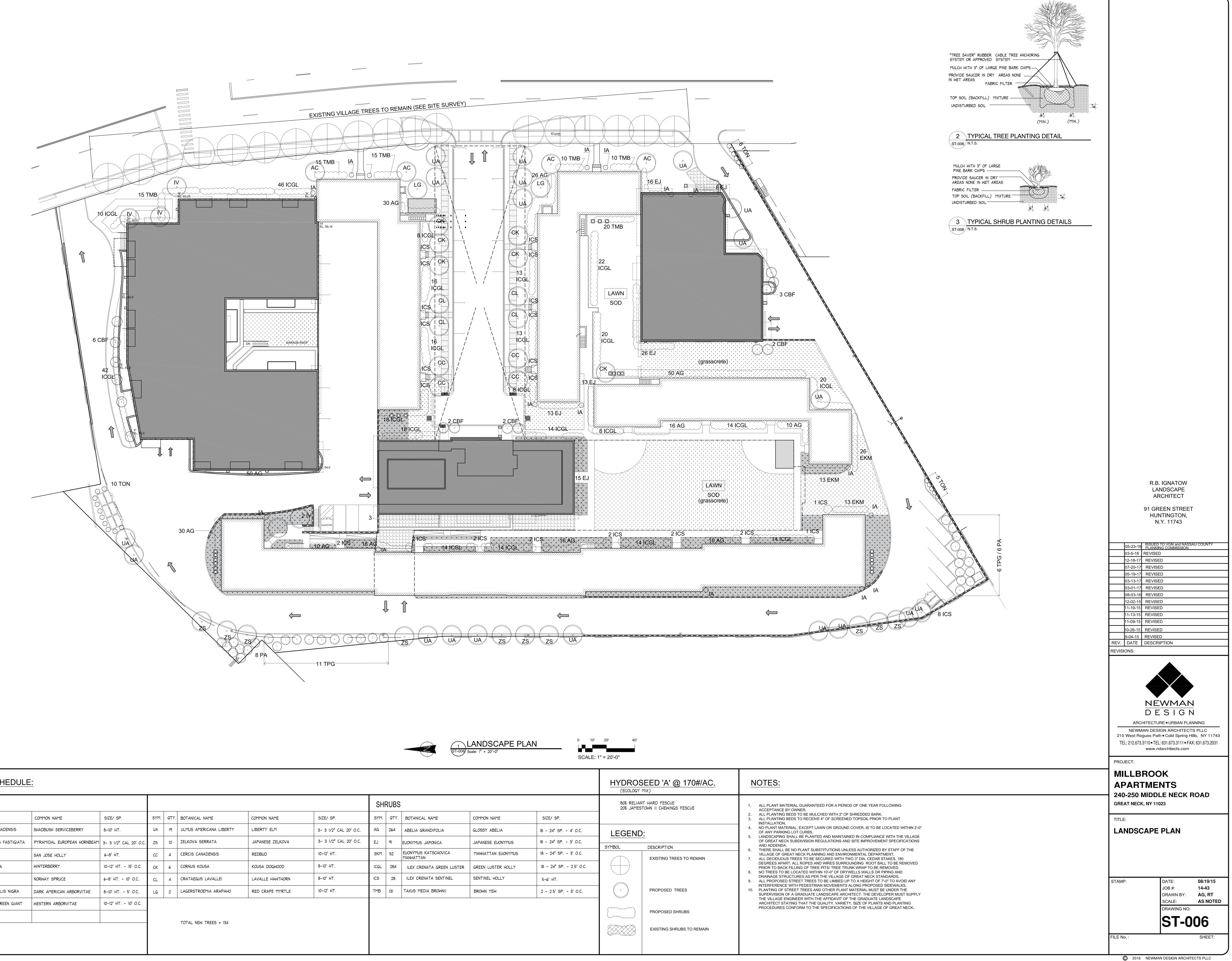
SITE GRADING AND DRAINAGE PLAN AND DETAILS

STAMP:	DATE:	08/14/15
	JOB #:	14-43
	DRAWN BY:	AG
	SCALE:	AS NOTED
	DRAWING NO:	
	ST-0	02
FILE No. :		SHEET:

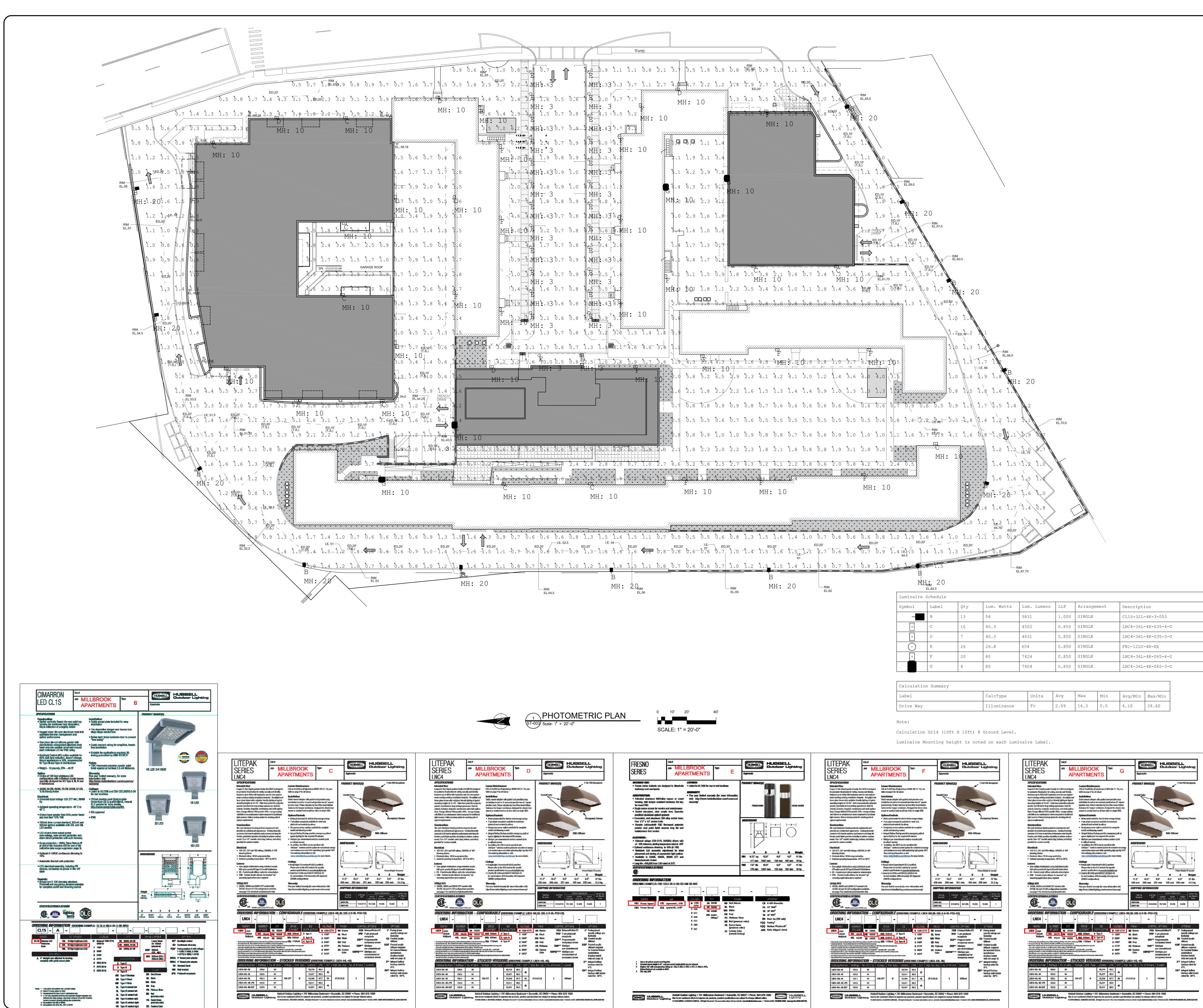
	ISSUED TO VGN and NASSAU COUNTY
05-23-18	PLANNING COMMISSION
03-5-18	REVISED
12-18-17	REVISED
07-20-17	REVISED
05-19-17	REVISED
03-13-17	REVISED
03-01-17	REVISED
08-03-16	REVISED
12-02-15	REVISED
11-19-15	REVISED
11-13-15	REVISED
11-09-15	REVISED
10-26-15	REVISED
9-04-15	REVISED
8-19-15	REVISED
DATE	DESCRIPTION

ARCHITECTURE • URBAN PLANNING NEWMAN DESIGN ARCHITECTS PLLC 210 West Rogues Path

Cold Spring Hills, NY 11743 TEL: 212.673.3110 • TEL: 631.673.3111 • FAX: 631.673.2031 www.ndarchitects.com


PROJECT:

MILLBROOK **APARTMENTS** 240-250 MIDDLE NECK ROAD GREAT NECK, NY 11023


TITLE:

SOIL EROSION CONTROL PLAN

STAMP:	DATE:	08/14/15
	JOB #:	14-43
	DRAWN BY:	JK
	SCALE:	AS NOTED
	DRAWING NO:	
	ST-0	05
ILE No. :		SHEET:

PLANTING SCHEDU	LE:									HYDRC (ECOLOG	SEED 'A' @ 170#/AC. Y MIX)	NOTES:
TREES						SH	RUBS				ANT HARD FESCUE ESTOWN II CHEWINGS FESCUE	1. ALL PLANT MATERIAL GUARANTEED FOR A PERIOD OF ONE YEAR FOLLOWING ACCEPTANCE BY OWNER.
SYM. QTY. BOTANICAL NAME	COMMON NAME	SIZE/ SP.	SYM. QTY. BOTANICAL NAME	COMMON NAME	SIZE/ SP.	SYM.	QTY. BOTANICAL NAME	COMMON NAME	SIZE/ SP.			 ALL PLANTING BEDS TO BE MULCHED WITH 2" OF SHREDDED BARK. ALL PLANTING BEDS TO RECEIVE 4" OF SCREENED TOPSOIL PRIOR TO PLANT INSTALLATION.
AC 4 AMELANCHIER CANADENSIS	SHADBUSH SERVICEBERRY	8-10' HT.	UA 19 ULMUS AMERICANA LIBERTY	LIBERTY ELM	3- 3 1/2" CAL 20' O.C.	AG	264 ABELIA GRANDIFOLIA	GLOSSY ABELIA	18 - 24" SP 4' O.C.	LEGEN	D:	 NO PLANT MATERIAL, EXCEPT LAWN OR GROUND COVER, IS TO BE LOCATED WITHIN 2'-0" OF ANY PARKING LOT CURBS.
CBF 15 CARPINUS BETULUS FASTIGIA	A PYRAMIDAL EUROPEAN HORNBEA	M 3- 3 1/2" CAL 20' O.C.	ZS 10 ZELKOVA SERRATA	JAPANESE ZELKOVA	3- 3 1/2" CAL 20' O.C.	EJ	91 EUONYMUS JAPONICA	JAPANESE EUONYMUS	18 - 24" SP 3' O.C.		DESCRIPTION	 LANDSCAPING SHALL BE PLANTED AND MAINTAINED IN COMPLIANCE WITH THE VILLAGE OF GREAT NECK SUBDIVISION REGULATIONS AND SITE IMPROVEMENT SPECIFICATIONS AND ADDENDA.
IA 13 ILEX AQUIPERNYI	SAN JOSE HOLLY	6-8' HT.	CC 4 CERCIS CANADENSIS	REDBUD	10-12' HT.	EKM	52 EUONYMUS KATSCHOVICA MANHATTAN	MANHATTAN EUONYMUS	18 - 24" SP 3' O.C.		EXISTING TREES TO REMAIN	 THERE SHALL BE NO PLANT SUBSTITUTIONS UNLESS AUTHORIZED BY STAFF OF THE VILLAGE OF GREAT NECK PLANNING AND ENVIRONMENTAL DEPARTMENT. ALL DECIDUOUS TREES TO BE SECURED WITH TWO 3" DIA, CEDAR STAKES, 180
IV 5 ILEX VERTICILLATA	WINTERBERRY	10-12' HT 15' O.C.	CK 6 CORNUS KOUSA	KOUSA DOGWOOD	8-10' HT.	ICGL	284 ILEX CRENATA GREEN LUSTER	GREEN LUSTER HOLLY	18 - 24" SP 2.5' O.C.			DEGREES APART. ALL ROPES AND WIRES SURROUNDING ROOT BALL TO BE REMOVED PRIOR TO BACK FILLING OF TREE PITS/ TREE TRUNK WRAP TO BE REMOVED. 8. NO TREES TO BE LOCATED WITHIN 10'-0" OF DRYWELLS WALLS OR PIPING AND
PA 14 PICEA ABIES	NORWAY SPRUCE	6-8' HT 10' O.C.	CL 4 CRATAEGUS LAVALLEI	LAVALLE HAWTHORN	8-10' HT.	ICS	28 ILEX CRENATA SENTINEL	SENTINEL HOLLY	5-6' HT.			 DRAINAGE STRUCTURES AS PER THE VILLAGE OF GREAT NECK STANDARDS. 9. ALL PROPOSED STREET TREES TO BE LIMBED UP TO A HEIGHT OF 7'-0" TO AVOID ANY INTERFERENCE WITH PEDESTRIAN MOVEMENTS ALONG PROPOSED SIDEWALKS.
TON 21 THUJA OCCIDENTALIS NIGRA	DARK AMERICAN ARBORVITAE	8-10' HT 5' O.C.	LG 2 LAGERSTROEMIA ARAPAHO	RED CRAPE MYRTLE	10-12' HT.	TMB	131 TAXUS MEDIA BROWNII	BROWN YEW	2 - 2.5' SP 3' O.C.	•	PROPOSED TREES	10. PLANTING OF STREET TREES AND OTHER PLANT MATERIAL MUST BE UNDER THE SUPERVISION OF A GRADUATE LANDSCAPE ARCHITECT. THE DEVELOPER MUST SUPPLY
TPG 17 THUJA PLICATA GREEN GIAN	WESTERN ARBORVITAE	10-12' HT 10' O.C.							L			THE VILLAGE ENGINEER WITH THE AFFIDAVIT OF THE GRADUATE LANDSCAPE ARCHITECT STATING THAT THE QUALITY, VARIETY, SIZE OF PLANTS AND PLANTING PROCEDURES CONFORM TO THE SPECIFICATIONS OF THE VILLAGE OF GREAT NECK.
											PROPOSED SHRUBS	
	·	·	TOTAL NEW TREES = 134								EXISTING SHRUBS TO REMAIN	

			L		
0	SINGLE		CL1S-32L-	-4K-3-053	
0	SINGLE		LNC4-36L-	-4K-035-4-1	U
0	SINGLE		LNC4-36L-	-4K-035-3-1	U
0	SINGLE		FN1-12LU-	-4K-XX	
0	SINGLE		LNC4-36L-	-4K-065-4-1	U
0	SINGLE		LNC4-36L-	-4K-065-3-1	U
	Max	Min	Avg/Min	Max/Min	
	14.3	0.5	4.18	28.60	

	05-23-18	ISSUED TO VGN and NASSAU COUNTY PLANNING COMMISSION
	03-5-18	REVISED
	12-18-17	REVISED
	07-20-17	REVISED
	05-19-17	REVISED
	03-13-17	REVISED
	03-01-17	REVISED
	08-03-16	REVISED
	12-02-15	REVISED
	11-19-15	REVISED
	11-13-15	REVISED
	11-09-15	REVISED
	10-26-15	REVISED
	9-04-15	REVISED
	8-19-15	REVISED
REV.	DATE	DESCRIPTION

NEWMAN

DESIGN

ARCHITECTURE • URBAN PLANNING

NEWMAN DESIGN ARCHITECTS PLLC 210 West Rogues Path • Cold Spring Hills, NY 11743

TEL: 212.673.3110 • TEL: 631.673.3111 • FAX: 631.673.2031

www.ndarchitects.com

240-250 MIDDLE NECK ROAD

PROJECT:

TITLE:

STAMP

FILE No. :

MILLBROOK

GREAT NECK, NY 11023

APARTMENTS

PHOTOMETRIC PLAN

© 2018 NEWMAN DESIGN ARCHITECTS PLLC

DATE:

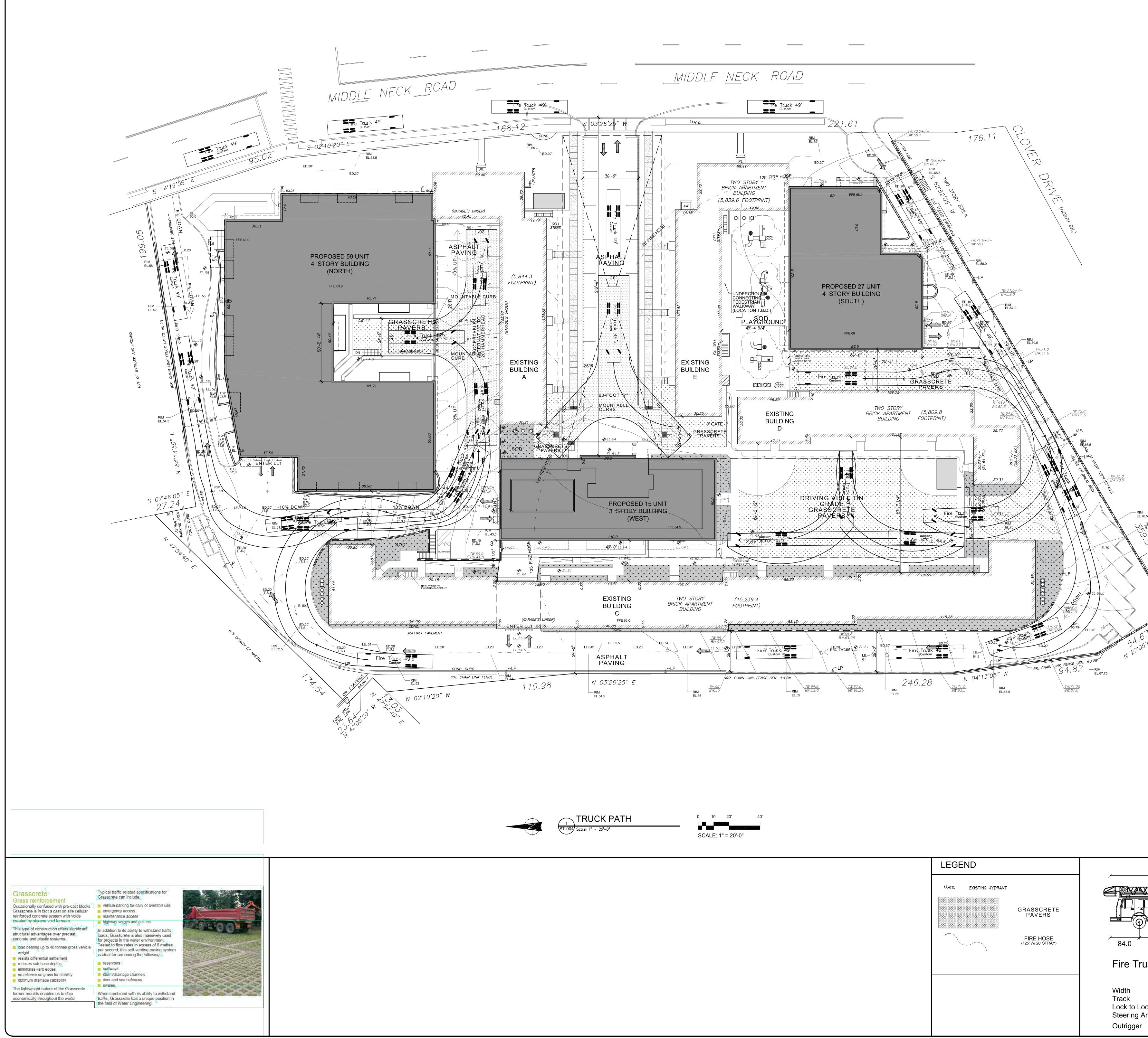
JOB #:

SCALE:

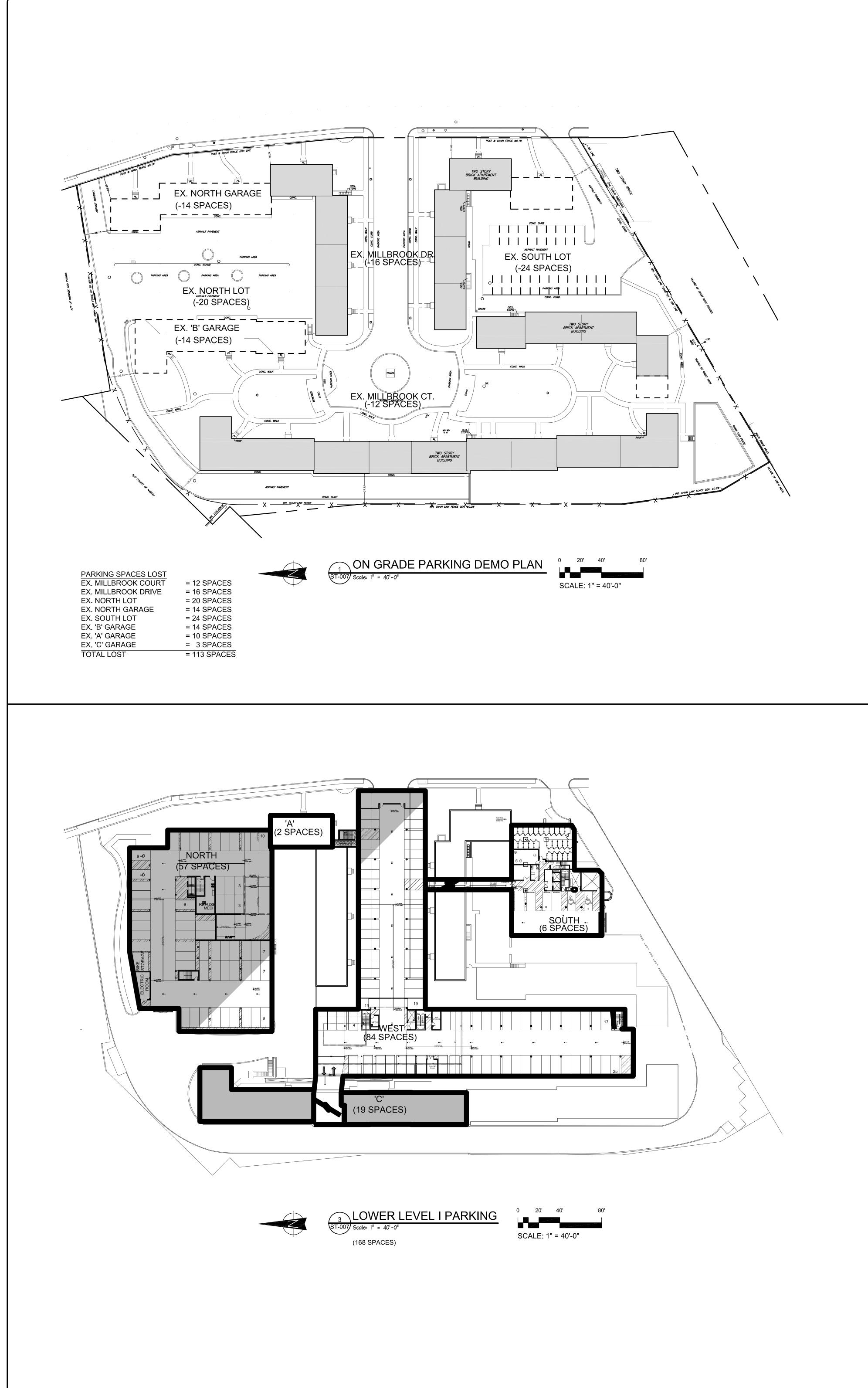
DRAWN BY:

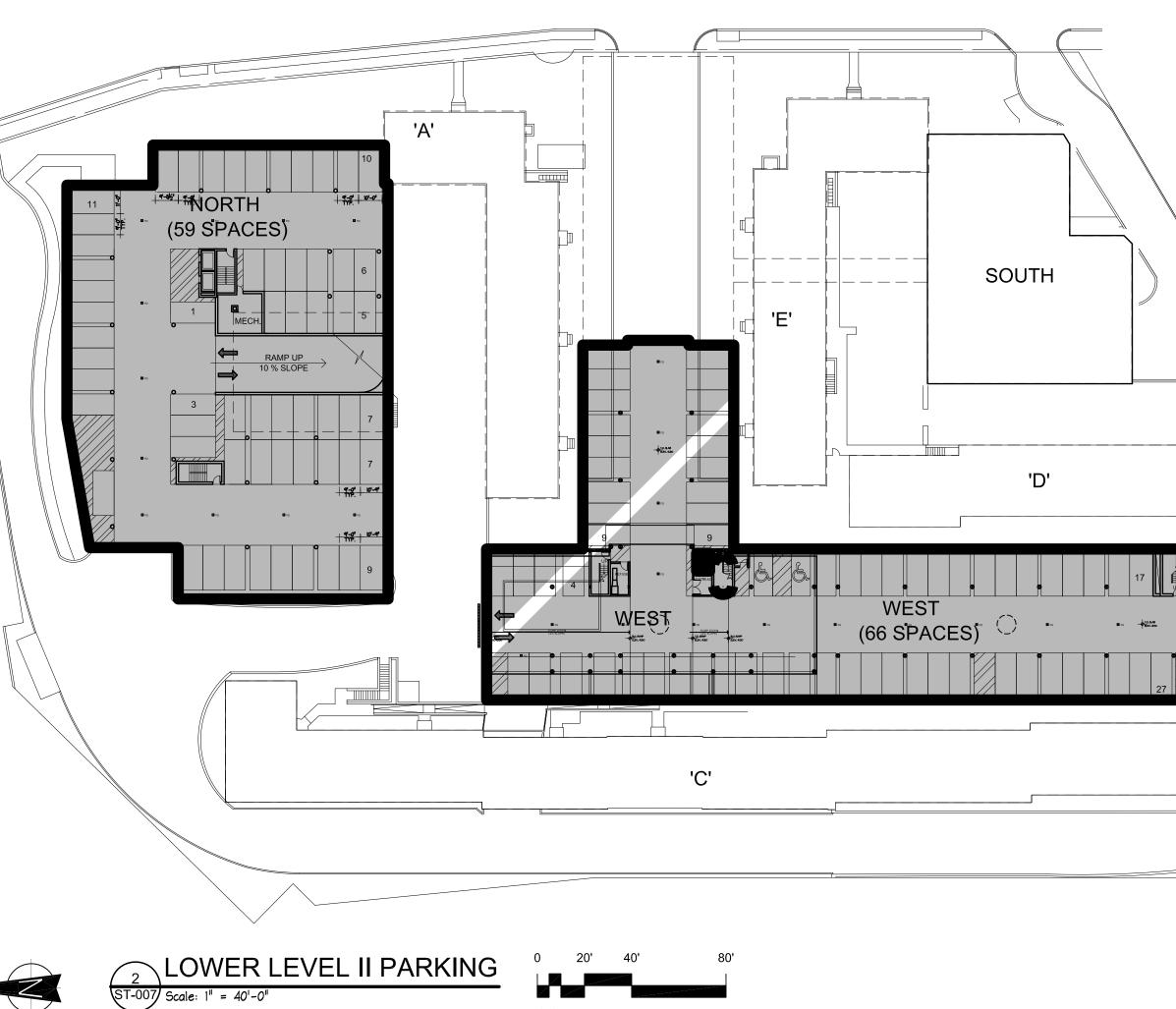
RAWING NO:

ST-003

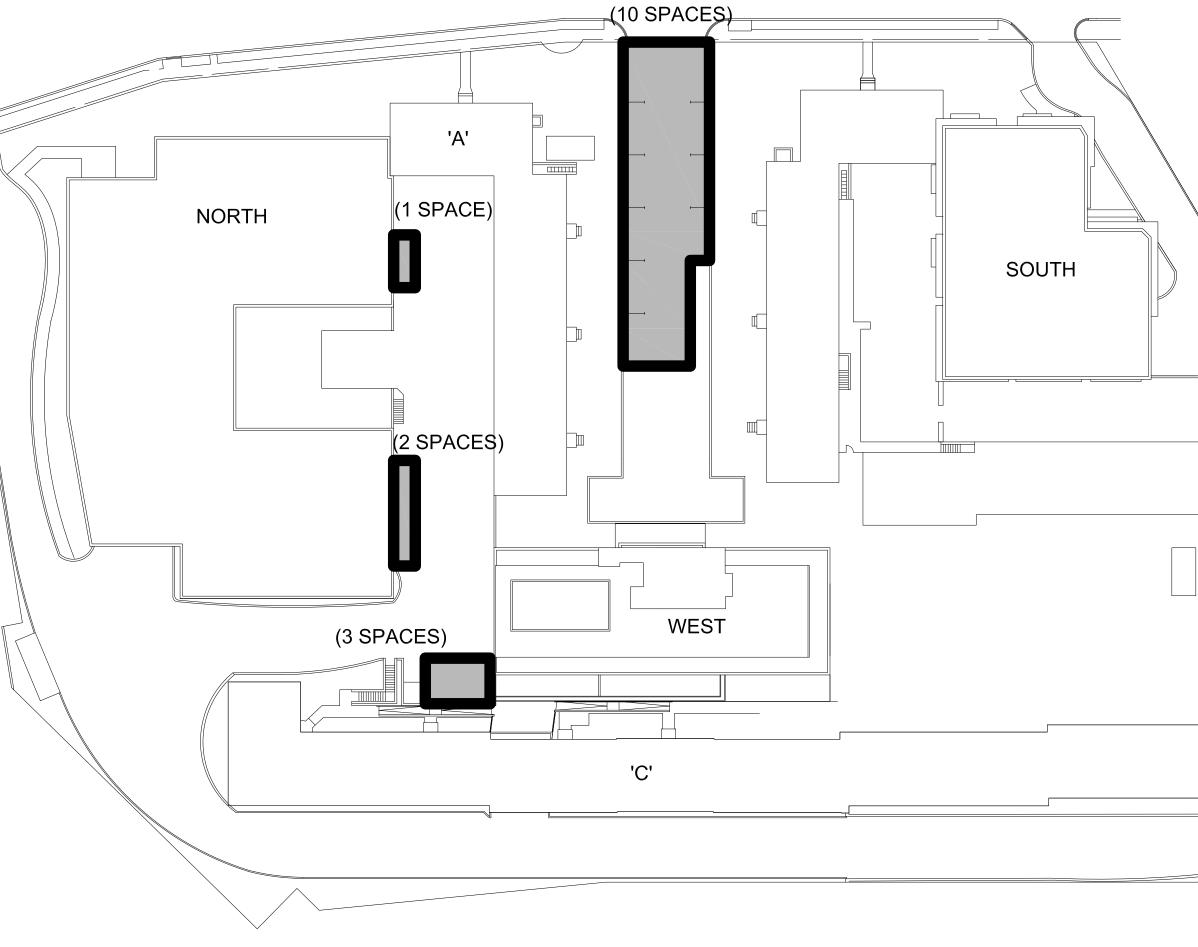

08/14/15

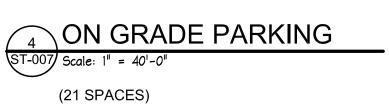
AS NOTED


SHEET:

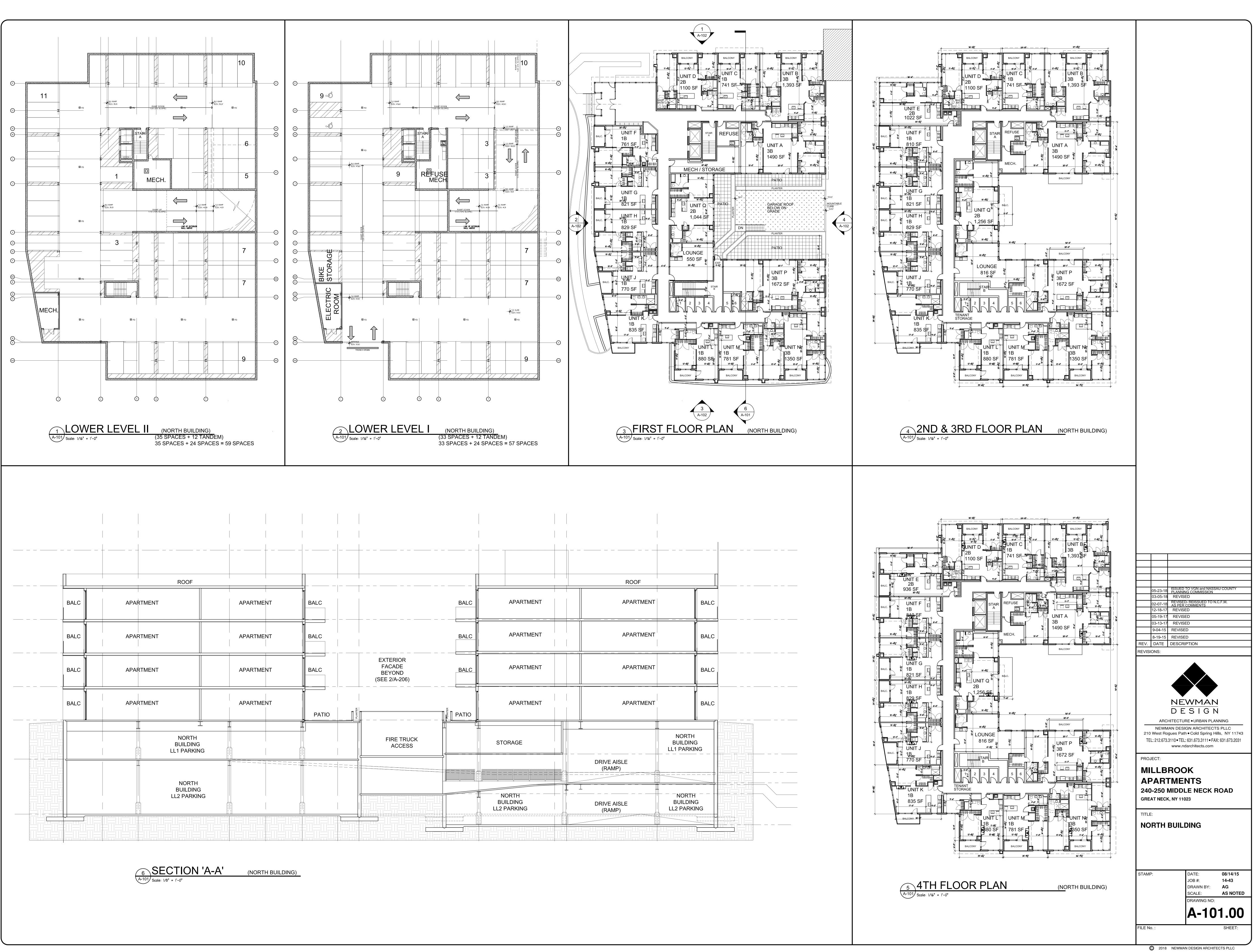

14-43

AG


. <u>76.0</u>	
NOOD FEARCE to 25	05-23-18 ISSUED TO VGN and NASSAU COUNTY PLANNING COMMISSION 03-5-18 REVISED 02-07-18 REVISED- REISSUED TO N.C.F.M. AS PER COMMENTS 12-18-17 REVISED 07-20-17 REVISED 05-19-17 REVISED 03-01-17 REVISED 03-01-17 REVISED 08-03-16 REVISED 12-202-15 REVISED 11-19-15 REVISED 11-09-15 REVISED
No. W Creating NECK	11-09-15 REVISED 10-26-15 REVISED 9-25-15 REVISED 9-24-15 REVISED 9-21-15 REVISED 9-17-15 REVISED 9-04-15 REVISED 8-19-15 REVISED REV. DATE DESCRIPTION
	NEWMAN DESIGN ARCHITECTURE • URBAN PLANNING NEWMAN DESIGN ARCHITECTS PLLC 210 West Rogues Path • Cold Spring Hills, NY 11743 TEL: 212.673.3110 • TEL: 631.673.3111 • FAX: 631.673.2031 www.ndarchitects.com
	PROJECT: MILLBROOK APARTMENTS 240-250 MIDDLE NECK ROAD GREAT NECK, NY 11023 TITLE: FIRE TRUCK ACCESS PATH
336.0 ck 49' inches : 102.0 : 96.0 : 96.0 : 6.0 : 33.3	STAMP: DATE: 08/14/15 JOB #: 14-43 DRAWN BY: JK SCALE: AS NOTED DRAWING NO: ST-004 FILE No. : SHEET:
: 240.0	© 2018 NEWMAN DESIGN ARCHITECTS PLLC

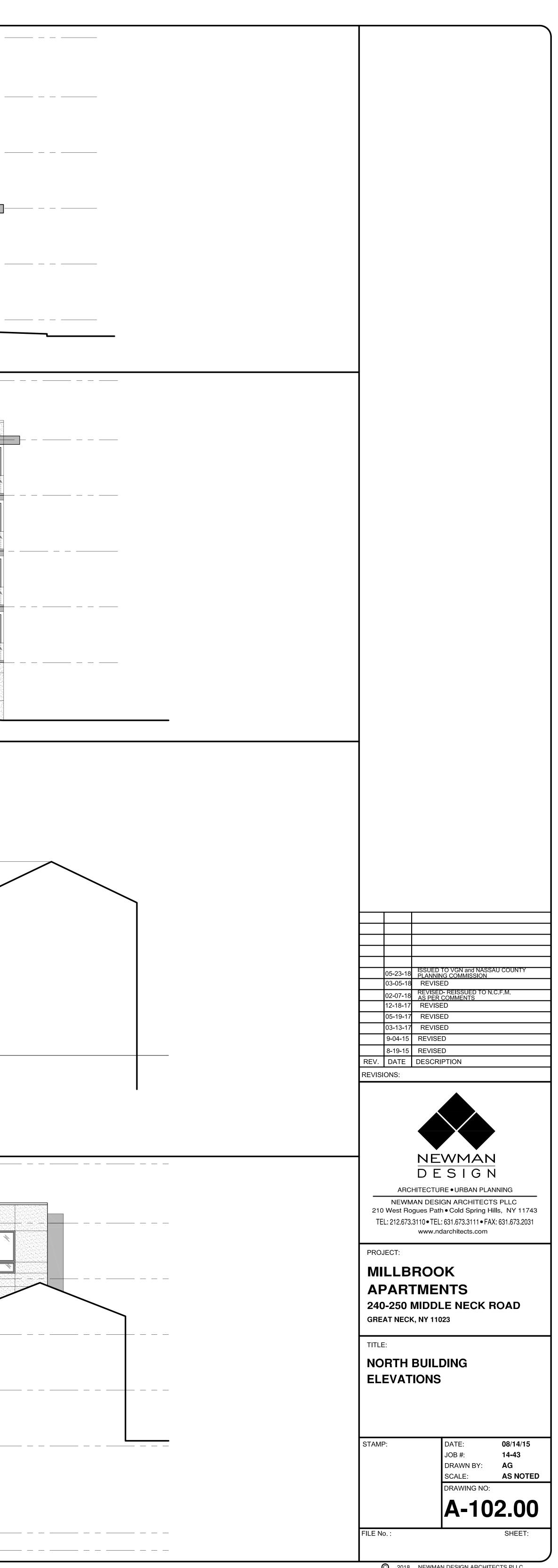


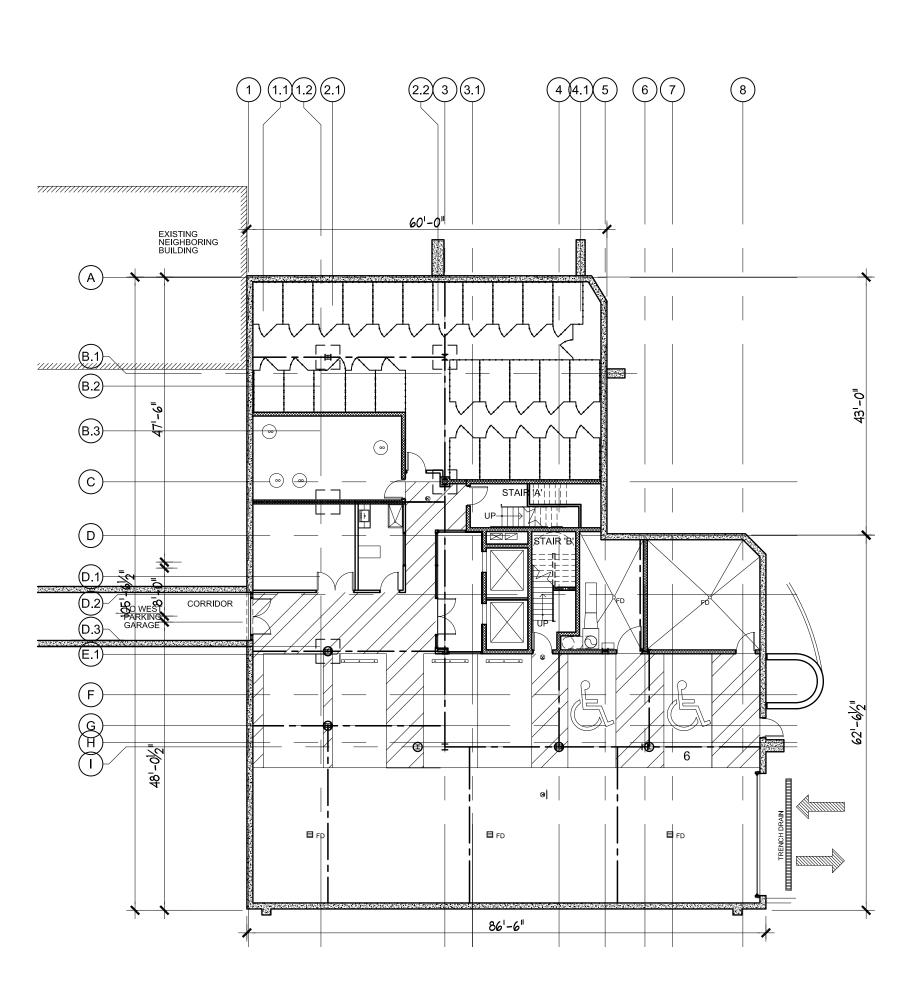
(125 SPACES)


SCALE: 1" = 40'-0"

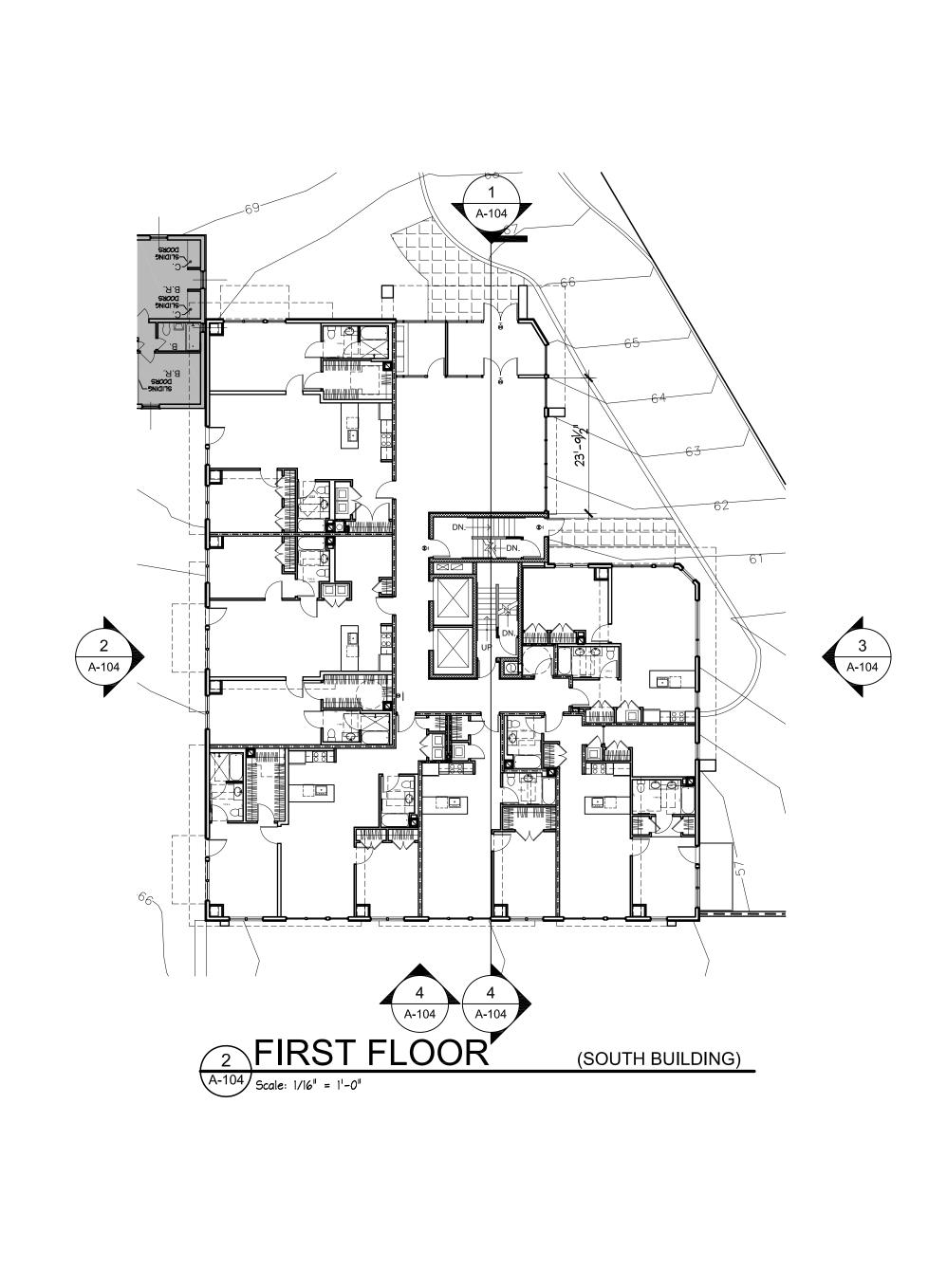
0 20' 40' 80' SCALE: 1" = 40'-0"

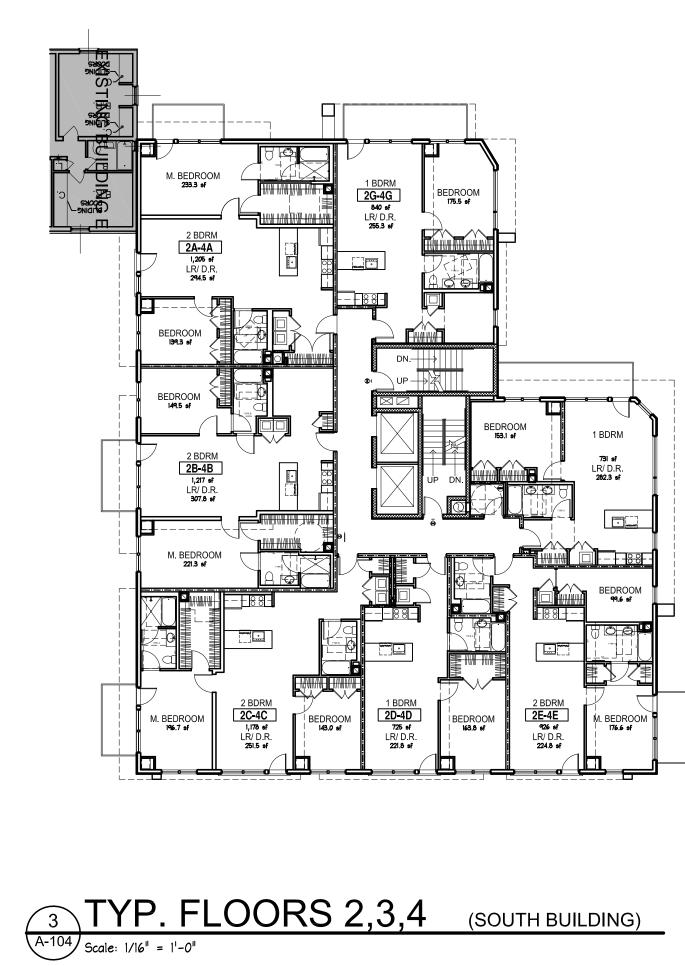
	05-23-18 ISSUED TO VGN and NASSAU COUNTY PLANNING COMMISSION 03-5-18 REVISED 12-18-17 REVISED
	07-20-17 REVISED 05-19-17 REVISED 03-13-17 REVISED
	03-01-17 REVISED 12-22-16 REVISED 08-03-16 REVISED
	12-22-16 REVISED 08-03-16 REVISED 12-02-15 REVISED 11-19-15 REVISED 11-13-15 REVISED
	12-22-16 REVISED 08-03-16 REVISED 12-02-15 REVISED 11-19-15 REVISED
	12-22-16 REVISED 08-03-16 REVISED 12-02-15 REVISED 11-19-15 REVISED 11-13-15 REVISED 11-09-15 REVISED 10-26-15 REVISED
	12-22-16 REVISED 08-03-16 REVISED 12-02-15 REVISED 11-19-15 REVISED 11-13-15 REVISED 11-09-15 REVISED 10-26-15 REVISED 9-04-15 REVISED REV. DATE
	12-22-16REVISED08-03-16REVISED12-02-15REVISED11-19-15REVISED11-13-15REVISED11-09-15REVISED9-04-15REVISED9-04-15REVISEDREV.DATEDESCRIPTIONREVISIONS:NEWMAN DESIGN
(5 SPACES)	12-22-16REVISED08-03-16REVISED12-02-15REVISED11-19-15REVISED11-13-15REVISED11-09-15REVISED9-04-15REVISED9-04-15REVISEDREV.DATEDATEDESCRIPTIONREVISIONS:
5 SPACES	12-22-16 REVISED 08-03-16 REVISED 12-02-15 REVISED 11-19-15 REVISED 11-13-15 REVISED 11-09-15 REVISED 10-26-15 REVISED 9-04-15 REVISED 9-04-15 REVISED 9-04-15 REVISED REV. DATE DESCRIPTION REVISIONS: NEWMAN DESIGN REVISIONS: ARCHITECTURE • URBAN PLANNING NEWMAN DESIGN ARCHITECTS PLLC 210 West Rogues Path • Cold Spring Hills, NY 11743 TEL: 212.673.3110 • TEL: 631.673.3111 • FAX: 631.673.2031 www.ndarchitects.com PROJECT: MILLBROOK
5 SPACES	12-22-16 REVISED 08-03-16 REVISED 12-02-15 REVISED 11-19-15 REVISED 11-13-15 REVISED 11-09-15 REVISED 10-26-15 REVISED 9-04-15 REVISED 9-04-15 REVISED REV. DATE DESCRIPTION REVISIONS: NEWMAN DESSIGN ARCHITECTURE • URBAN PLANNING NEWMAN DESIGN ARCHITECTS PLLC 210 West Rogues Path • Cold Spring Hills, NY 11743 TEL: 212.673.3110 • TEL: 631.673.3111 • FAX: 631.673.2031 www.ndarchitects.com
ARKING PROVIDED BY BUILDING: DRTH GARAGE = 116 SPACES DUTH GARAGE = 6 SPACES	12-22-16 REVISED 08-03-16 REVISED 12-02-15 REVISED 11-19-15 REVISED 11-13-15 REVISED 11-09-15 REVISED 10-26-15 REVISED 9-04-15 REVISED 9-04-15 REVISED REV. DATE DESCRIPTION REVISIONS: NEWMAN DESCRIPTION REV. DATE DESCRIPTION REVISIONS: NEWMAN NEWMAN DESIGN ARCHITECTURE • URBAN PLANNING NEWMAN DESIGN ARCHITECTS PLLC 210 West Rogues Path • Cold Spring Hills, NY 11743 TEL: 212.673.3110 • TEL: 631.673.3111 • FAX: 631.673.2031 www.ndarchitects.com PROJECT: MILLBROOK APARTMENTS 240-250 MIDDLE NECK ROAD
ARKING PROVIDED BY BUILDING: DRTH GARAGE = 116 SPACES DUTH GARAGE = 6 SPACES EST GARAGE = 150 SPACES LLBROOK COURT = 10 SPACES DRTHWEST DRIVE = 6 SPACES DUTHWEST DRIVE = 6 SPACES DUTHWEST DRIVE = 5 SPACES DUTHWEST DRIVE = 5 SPACES SLBLDG. A = 2 SPACES	12-22-16 REVISED 08-03-16 REVISED 12-02-15 REVISED 11-19-15 REVISED 11-13-15 REVISED 11-09-15 REVISED 10-26-15 REVISED 9-04-15 REVISED 9-04-15 REVISED 9-04-15 REVISED 9-04-15 REVISED REV. DATE DESCRIPTION REVISIONS: REV. DATE DESCRIPTION REV. DATE DESCRIPTION REVISIONS: NEWMANDESIGN ARCHITECTS PLIC NEWMAN DESIGN ARCHITECTS PLLC 210 West Rogues Path • Cold Spring Hills, NY 11743 TEL: 212.673.3110 • TEL: 631.673.3111 • FAX: 631.673.2031 www.ndarchitects.com PROJECT: MILLBROOK APARTMENTS 240-250 MIDDLE NECK ROAD GREAT NECK, NY 11023 TITLE:
ARKING PROVIDED BY BUILDING: DRTH GARAGE = 116 SPACES DUTH GARAGE = 6 SPACES EST GARAGE = 150 SPACES LIBROOK COURT = 10 SPACES DUTHWEST DRIVE = 6 SPACES DUTHWEST DRIVE = 5 SPACES X. BLDG. A = 2 SPACES X. BLDG. C = 19 SPACES DTAL = 314 SPACES PROVIDED	12-22-16 REVISED 08-03-16 REVISED 12-02-15 REVISED 11-19-15 REVISED 11-13-15 REVISED 11-09-15 REVISED 10-26-15 REVISED 9-04-15 REVISED 9-04-15 REVISED 9-04-15 REVISED 9-04-15 REVISED REV. DATE DESCRIPTION REVISIONS: REV. DATE DESCRIPTION REV. DATE DESCRIPTION REVISIONS: NEWMANDESIGN ARCHITECTS PLIC NEWMAN DESIGN ARCHITECTS PLLC 210 West Rogues Path • Cold Spring Hills, NY 11743 TEL: 212.673.3110 • TEL: 631.673.3111 • FAX: 631.673.2031 www.ndarchitects.com PROJECT: MILLBROOK APARTMENTS 240-250 MIDDLE NECK ROAD GREAT NECK, NY 11023 TITLE:
ARKING PROVIDED BY BUILDING: DRTH GARAGE = 116 SPACES DUTH GARAGE = 6 SPACES EST GARAGE = 150 SPACES LLBROOK COURT = 10 SPACES DRTHWEST DRIVE = 6 SPACES DUTHWEST DRIVE = 5 SPACES OUTHWEST DRIVE = 5 SPACES S. BLDG. A = 2 SPACES S. BLDG. C = 19 SPACES	12-22-16 REVISED 08-03-16 REVISED 11-09-15 REVISED 11-19-15 REVISED 11-19-15 REVISED 11-09-15 REVISED 11-09-15 REVISED 10-26-15 REVISED 9-04-15 REVISED 9-04-15 REVISED 9-04-15 REVISED 9-04-15 REVISED REV DATE DESCRIPTION REVISIONS: REVISED REVISIONS: NEWMAN DESIGN ARCHITECTS PLLC REVISED NEWMAN DESIGN ARCHITECTS PLLC 200 West Rogues Path • Cold Spring Hills, NY 11743

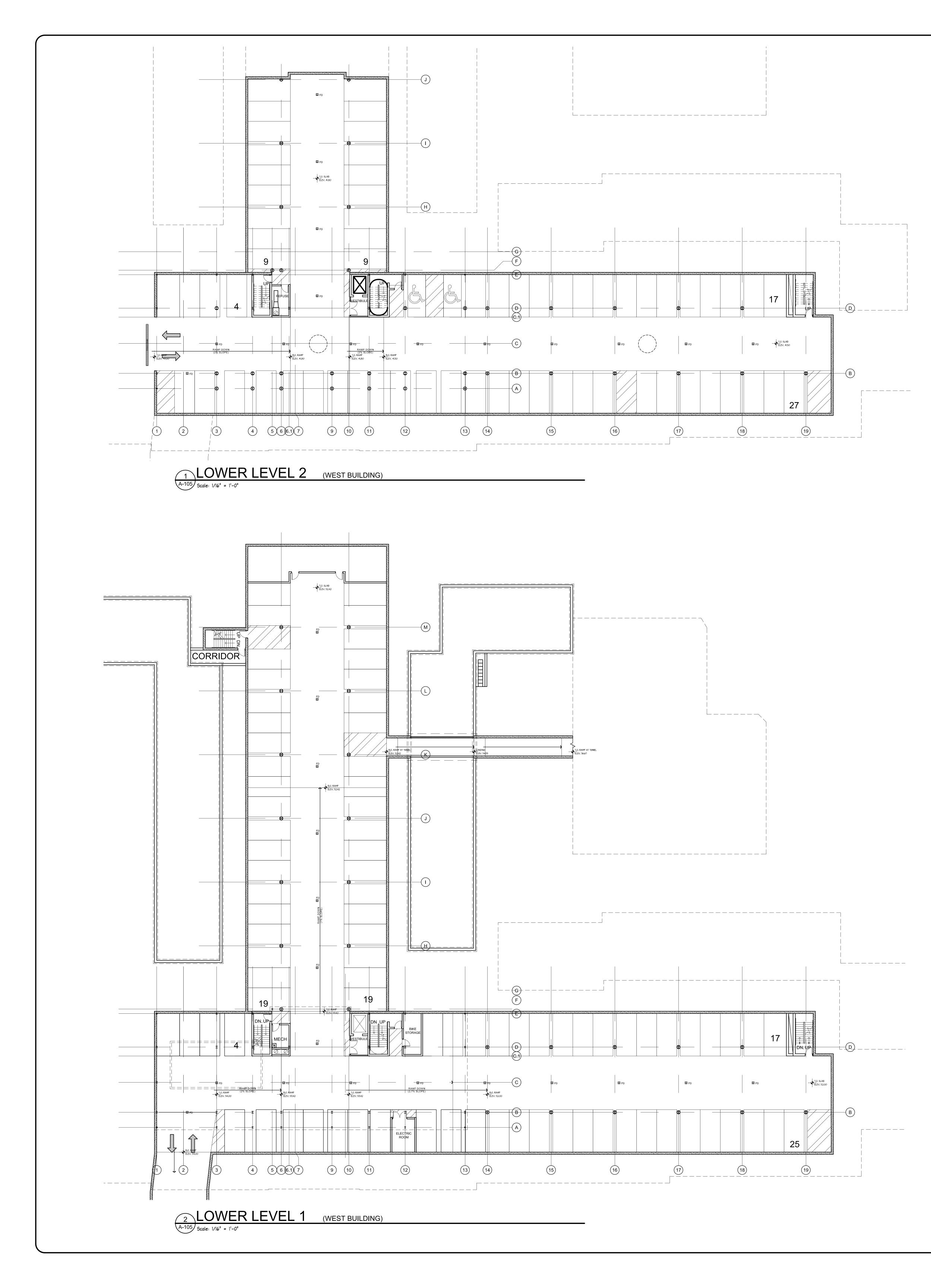


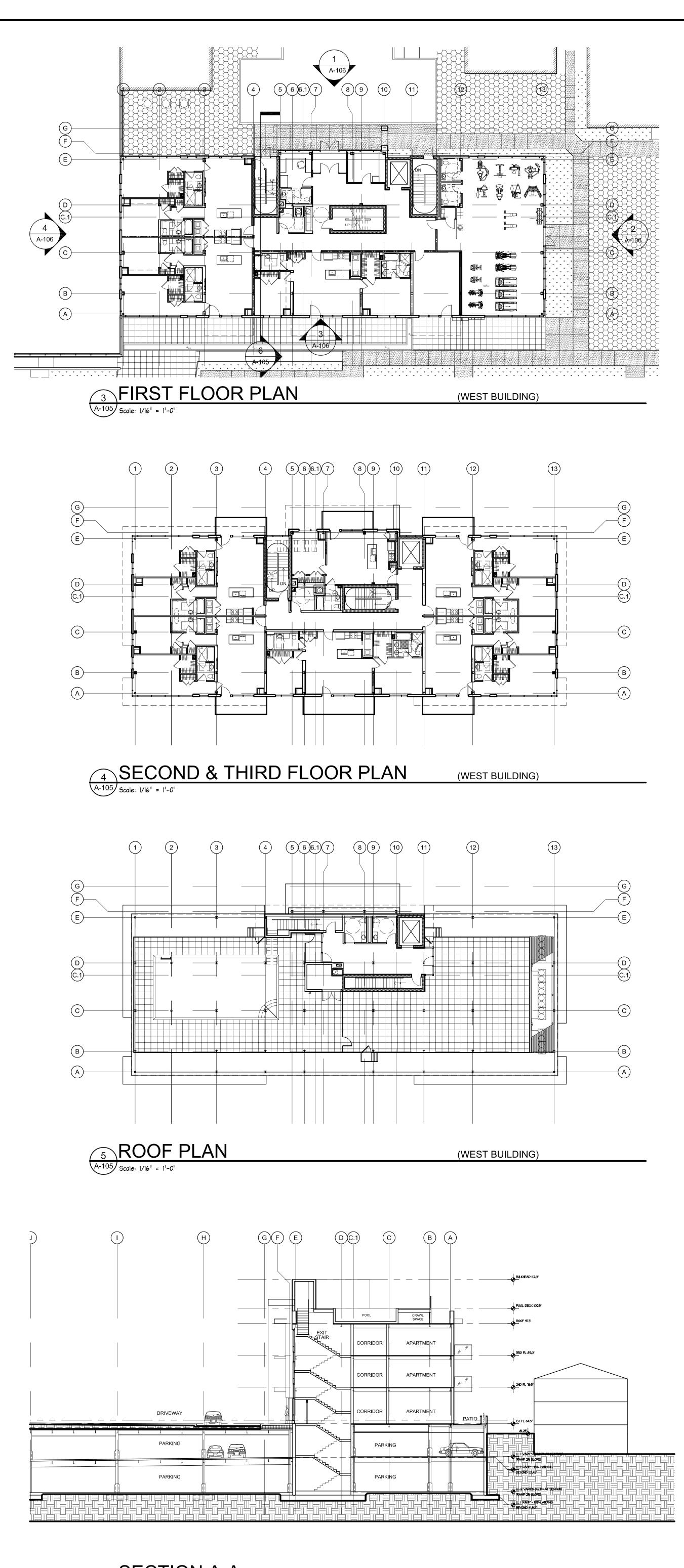


52487		الار المحادثين المحادثين المحادثين المحادث المحادثين المحادثين																				
					- 71 (r															2000 - 2000		
				ľ			, ,				``									Ŵ		
						11, 11, 11, 11,					-		_							-		
		M		ľ ì					//		M		M						*	、 、		
						'/, '/, '/, '/,					-									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
						1			//	×	1		Ŵ		Ŵ	/	<i>\</i>	Ŵ	1		/	/
						11, 11, 11, 11,											<u> </u>			<u> </u>		
			1						1	Ì					/	1	 ````	//	$\overline{\times}$			<u> </u>
												1		M			<u>N</u>					


	~
·····································	


Γ		EXIT STAIR B	LEVATOR SHAFT (STAIR BEYOND)		
			CORR.	APARTMENT	
	APARTMENT		CORR.	APARTMENT	
	APARTMENT		CORR.	APARTMENT	EXISTING APARTMENT
ROAD BEYOND 10% SLOPE	LOBBY		CORR.	APARTMENT	EXISTING APARTMENT
				PARKING	


4 A-104 Scale: 1/8" = 1'-0"


(SOUTH BUILDING)

— i							
05-23-1	T EANNING COMMISSION						
03-05-1							
02-07-1	8 AS PER COMMENTS						
12-18-1							
05-19-1							
03-01-1							
08-03-1							
12-02-1							
11-19-1							
11-13-1	5 REVISED						
11-09-1	5 REVISED						
10-26-1	5 REVISED						
9-04-15							
8-19-15							
REV. DATE	DESCRIPTION						
REVISIONS:							
210 West Rogues Path • Cold Spring Hills, NY 11743 TEL: 212.673.3110 • TEL: 631.673.3111 • FAX: 631.673.2031 www.ndarchitects.com PROJECT:							
MILLE APAR 240-250 GREAT NEC	www.ndarchitects.com						
MILLE APAR 240-250 GREAT NEC	BROOK SROOK SMEENTS MIDDLE NECK ROAD SK, NY 11023 BUILDING DATE: 08/14/15 JOB #: 14-43 DRAWN BY: JK SCALE: AS NOTEE DRAWING NO:						
MILLE APAR 240-250 GREAT NEC	BUILDING DATE: 08/14/15 JOB #: 14-43 DRAWN BY: JK SCALE: AS NOTEI						

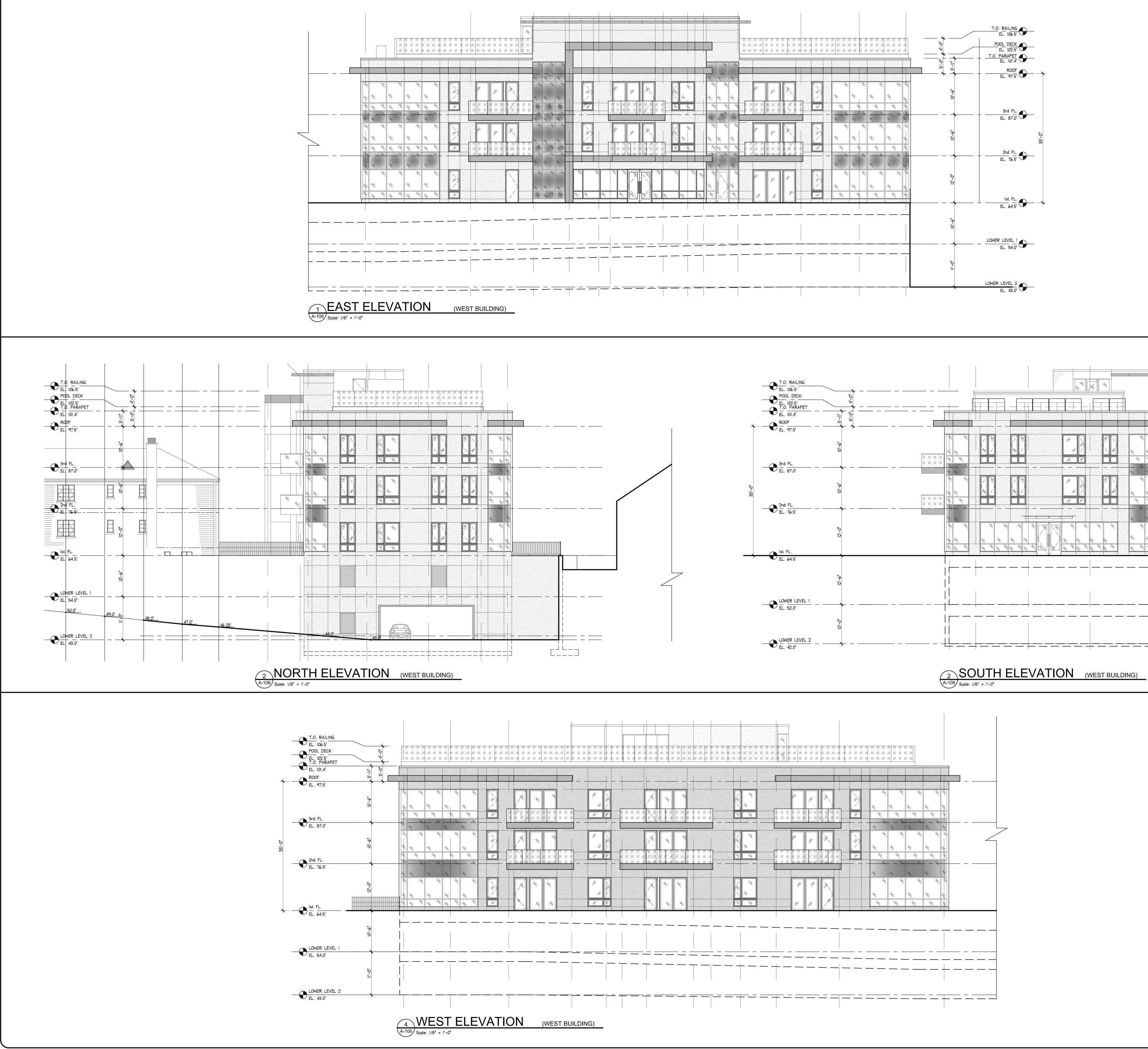
⁶SECTION A-A A-105 Scale: 1/16" = 1'-0"

(WEST BUILDING)

05-23-18 ISSUED TO VGN and NASSAU COUNTY PLANNING COMMISSION 03-05-18 REVISED 02-07-18 REVISED- REISSUED TO N.C.F.M AS PER COMMENTS 12-18-17 REVISED 05-19-17 REVISED 03-13-17 REVISED 03-01-17 REVISED 08-03-16 REVISED 12-02-15 REVISED 11-19-15 REVISED 11-13-15 REVISED 11-09-15 REVISED 10-26-15 REVISED 9-04-15 REVISED 8-19-15 REVISED REV. DATE DESCRIPTION

REVISIONS:

ARCHITECTURE • URBAN PLANNING NEWMAN DESIGN ARCHITECTS PLLC 210 West Rogues Path


Cold Spring Hills, NY 11743 TEL: 212.673.3110 • TEL: 631.673.3111 • FAX: 631.673.2031 www.ndarchitects.com

PROJECT:

MILLBROOK **APARTMENTS** 240-250 MIDDLE NECK ROAD GREAT NECK, NY 11023

TITLE: WEST BUILDING

STAMP:	DATE:	08/14/15
	JOB #:	14-43
	DRAWN BY:	AG
	SCALE:	AS NOTED
	DRAWING NO:	
	A-10	5.00
FILE No. :		SHEET:

05-23-18ISSUED TO VGN and NASSAU COUNTY PLANNING COMMISSION03-05-18REVISED02-07-18REVISED- REISSUED TO N.C.F.M. AS PER COMMENTS12-18-17REVISED05-19-17REVISED03-13-17REVISED03-01-17REVISED03-01-17REVISED08-03-16REVISED11-19-15REVISED11-19-15REVISED11-09-15REVISED10-26-15REVISED9-04-15REVISED
9-04-15 REVISED 8-19-15 REVISED REV. DATE DESCRIPTION REVISIONS: Image: Construct of the second
STAMP: DATE: 08/14/15 JOB #: 14-43 DRAWN BY: AG SCALE: AS NOTED DRAWING NO: A-106.000

Existing Conditions

Proposed Conditions

Existing Conditions

Proposed Conditions

Existing Conditions

Proposed Conditions

3. Analysis of Potential Environmental impacts

3.1. Impact on Land

3.1.1. Geology

Existing Conditions - Long Island's geology is especially important as it relates to the population's source of drinking water. Because all of Nassau and Suffolk County drinking water is derived from groundwater, the geological formations that retain that water are referred to collectively as a sole-source aquifer. These aquifers are recharged by rainfall and consequently all activities that occur at the surface have the potential to impact the quantity and quality of the aquifers' recharge. Long Island ultimately rests on bedrock, impermeable rock composed of schist and gneiss.

The Lloyd Aquifer rests on the bedrock and is isolated from the shallower Magothy Aquifer by a 100-foot thick layer of clay. The Water Authority of Great Neck North draws water from several wells in the Lloyd and Glacial aquifers and one in the Magothy aquifer. The Lloyd aquifer and overlying clay are part of the Raritan Formation, fine to coarse-grained sand and gravel.

The Magothy Formation is separated from the Raritan Formation by the Raritan clay layer. The Magothy Formation consists of sand, silt, and clay fluvial deposits with scattered clay lenses.

Sand and gravel from the last Ice Age of 15,000 years ago were deposited on top of the Magothy Formation. Most shallow private wells and some municipal wells draw from the Glacial Aquifer. The Water Authority of Great Neck North has two (2) wells that draw water from the Glacial Aquifer located within Great Neck.

Potential Impacts of Proposed Project – Only the surface glacial deposits would be impacted by the development of the site. Grading of the site would result in movement of material throughout the site (see following sections on Soils and Topography). Deeper geological layers would not be impacted by site development.

Proposed Mitigation – Mitigation for the effects of site grading/construction are discussed in Section 3.1.3 below.

3.1.2. Soils and Topography

Existing Conditions – The 4.35 acre property slopes from south to north. Based on the most recent USGS LIDAR digital elevation model (DEM), the southern end of the site is approximately 70 feet above sea level, while the northern end drops to

approximately 53 feet above sea level. As such, site topography is relatively level with approximately 82% of the site having slopes less than 10%, approximately 9.5% of the site having slopes ranging from 10-15% and approximately 8.5% of the site having slopes greater than 15%.

The Soil Conservation Survey (SCS) of Nassau County⁴ provides information that is useful as a general evaluation of the soils. According to the SCS, 100% of the soil on site is classified as Urban Land-Montauk Complex, 3 to 8 percent slopes (UnB). UnB soil consists of urbanized areas and very deep, well-drained soils. This unit comprises approximately 60% urbanized area, 25% Montauk soils, and 15% other soils.

Potential Impacts of Proposed Project – Excavation would be required for construction of the parking garages/buildings and drainage structures.

Proposed Mitigation - See construction impacts section below.

3.1.3. Construction Impacts

Potential Impacts of Proposed Project – The redevelopment of Millbrook Apartments, like any construction project, would have short-term impacts on the environment related strictly to the process itself. These could include soil erosion, noise, traffic disruption, and dust. Demolition of the existing buildings and construction is estimated to extend approximately 27 months, subject to weather-related delays and other unforeseen events. Weekday construction activities would be confined to the hours of 8 AM to 7 PM. Weekend construction activities would be restricted to the hours of 9 AM to 7 PM on Saturdays and holidays. An overall construction schedule is provided in Figure 2-3.

A. Pappajohn Company is the general contractor for this project and has prepared a Site Logistics Plan (Figure 2-2) detailing the two major phases of construction. The Site Logistics Plan has been designed to minimize potential impacts while the building is under construction. The components of the two phases are as follows:

Phase No. 1

• Install safety fencing/temporary sidewalks/bridges/lighting etc. in front of apartments that face work areas. Relocate mailboxes and household garbage containers.

⁴ Soil Survey of Nassau County New York. Soil Conservation Service, February, 1987

- Complete drive way around rear of existing building in the south west corner of the property, add 5 parking spaces. New section of drive way completes a loop drive around the property.
- Demolish 2 units in the south west corner of the property. Removal of these units allows for future fire truck access.
- Demolish 4 units at front of property on south side. Removal of these units allows for the construction of the South apartment building.
- Lose 24 surface parking spaces where South apartment building is to be built.
- Lose 28 on grade parking spaces at Millbrook Court.
- Construct 150-car Millbrook Court/West garage.
- Construct 27-unit South apartment building and 6-car parking garage
- Construct 15-unit West apartment building.
- Regain use of 10 on-grade parking spaces Millbrook Court.

It is estimated that Phase 1 will take approximately 15 months. At the completion of Phase No. 1, there will be 155 units and 261 parking spaces.

Phase No. 2

- Demolish 13 units at front of property/north side allows for the construction of the North building.
- Demolish 15 units allows for the construction of the North building.
- Demolish 28 existing garage spaces.
- Lose 20 surface parking spaces north side.
- Construct 59-unit apartment North building and 116-car garage.
- Construct 6 surface parking spaces on north side.

It is estimated that Phase 2 will take approximately 12 months. At the completion of Phase No. 2, there will be 186 units 314 parking spaces.

Excavation will be required for the construction of the proposed parking garages and the installation of new drywells. The total volume of soil to be excavated is approximately 47,760 cubic yards. Construction of the West parking garage will result in approximately 19,600 cubic yards of material removed (providing 66 parking spaces on Lower Level II and 84 parking spaces on Lower Level I for a total of 150 parking spaces). Construction of the South parking garage on the south-east corner of the property will require the removal of approximately 4,000 cubic yards of material (providing a total of 6 parking spaces on Lower Level I). The North parking garage on the north-east corner of the property will require the removal of

approximately 16,200 cubic yards of material (providing 59 parking spaces on Lower Level II and 57 parking spaces on Lower Level 1 for a total of 116 parking spaces). Construction of the 'Building A' parking area will result in approximately 800 cubic yards of material removed (providing a total of 2 parking spaces on Lower Level I). Construction of the 'Building C' parking area will result in approximately 3,400 cubic yards of material removed (providing a total of 19 parking spaces on Lower Level I). In addition, approximately 3,760 cubic yards of soil will be removed to install the 102,000 cubic feet of stormwater storage.

Overall, the excavation portions of the project could total approximately 34 weeks. During this phase, approximately 36 truck trips per day could be anticipated.

Vibration impacts are anticipated to be minimal as the construction process is not anticipated to require any drilling or significant disturbances underground.

Proposed Mitigation – Throughout the construction process, all construction vehicles and materials will be stored on-site within the limits denoted by the temporary construction fencing. To accommodate the potential demand for off-site resident and contractor vehicle parking during construction, the applicant has initiated discussions with nearby religious institutions (Temple Beth-El and Shaare Zion) to provide off-site parking for resident and construction worker vehicles if on-site space becomes limited during construction.

A detailed Soil Erosion Control Plan has also been prepared (Figure 2-8). Erosion would be curtailed by the use of construction fencing with silt barriers, storm drain inlet filters and filter protection for new drywells on-site. The construction entrances would be stabilized with crushed stone to prevent soil and loose debris from being carried onto local roads. All construction-related erosion control measures would be removed during final landscaping.

3.2. Impact on Water

3.2.1. Groundwater

Existing Conditions – The site is not located in a Special Groundwater Protection Area (SGPA) as designated by the Nassau County Department of Health and Long Island Comprehensive Special Groundwater Protection Area Plan. An SGPA is defined by the Long Island Regional Planning Board⁵ as a "*recharge watershed area*

⁵ L. E. Koppelman, A. Kunz, E. Tanenbaum, and D. Davies. <u>The Long Island Comprehensive Special Groundwater</u> <u>Protection Area Plan</u>, Long Island Regional Planning Board, 1992.

within a designated sole source area contained within counties having a population of one million or more which is particularly important for the maintenance of large volumes of high quality groundwater for long periods of time."

Article X of the Nassau County Public Health Ordinance was drafted to help protect the aquifer by regulating the discharge of sewerage and industrial wastewater. Because the Millbrook Apartments would be connected to the public sewerage collection system and would not generate industrial wastewater, the development restrictions of Article X would not apply.

The site is located in Hydrogeological Zone I. Areas designated as such are identified as "deep recharge areas" important to the groundwater aquifers. Hydrogeological Zone I is one of the three (3) major deep recharge zones of Long Island. Nitrates from fertilizers and on-site waste disposal systems have contaminated portions of this zone. Additional contamination has also occurred in parts of the Zone from synthetic organic chemicals derived from industrial and other activities. Zone I contributes water to the Magothy aquifer and is the major water supply for Nassau and Suffolk residents. As such it is closely monitored and protected.

The three (3) major aquifers or saturated water-bearing strata beneath the surface of Nassau and Suffolk Counties are the Upper Glacial, Magothy, and Lloyd aquifers. The upper glacial and Magothy aquifers are the major sources of drinking water for Long Island (see section on Geology). Groundwater below the site generally flows in a north-northwesterly direction toward the shore where it discharges to the bays and harbors of the Long Island Sound. According to the USGS Water Resources Investigations Report 86-4189, the water table is at an elevation of approximately 20 feet above mean sea level. As site elevation averages approximately 60 feet, the water table would be approximately 40 feet below grade.

The existing building is connected to the sewer system.

Potential Impacts of Proposed Project – Impacts to groundwater include those related to withdrawals and others related to infiltration. This project would result in a minor increase in withdrawal of groundwater from Water Authority of Great Neck North wells. Water consumption by the redeveloped Millbrook Apartments is estimated to be 47,400 gallons per day.⁶ Existing water consumption, based upon water use records provided by the applicant, is approximately 11,500 gallons per day

⁶ Nassau County Department of Public Works. *Minimum Design Sewage Flow Rates*. 2008.

The proposed apartment building would be connected to the Great Neck Water Pollution Control District wastewater system. On-site groundwater inputs would therefore include only minor quantities of stormwater and its typical contaminants. These are discussed further in the section on stormwater (Section 3.2.3).

Proposed Mitigation – Letters requesting water availability were sent to the Water Authority of Great Neck North on March 24, 2015, June 29, 2016 and July 25, 2017. Letters requesting sewer service availability were sent to the Great Neck Water Pollution Control District on March 24, 2015 and July 25, 2017 (Appendix B). Use of mulch would conserve moisture in planters. Water conserving appliances would further reduce consumption of public water.

3.2.2. Flooding and Flood Zones

Existing Conditions – The subject property is referred to on the Federal Emergency Management Agency flood zone map as "No Special Flood Hazard."

Potential Impacts of Proposed Project – After development, the flooding potential on the property would be unchanged.

Proposed Mitigation – No mitigation is required.

3.2.3. Stormwater Collection, Treatment, and Recharge

Existing Conditions – Stormwater from the existing developed site drains to on-site drywells. The site is currently developed as a residential apartment complex and consists of roughly 2.74 acres of impervious surface (approximately 63% of the site area).

Potential Impacts of Proposed Project – Development of the site would result in a fully developed site with approximately 3.04 acres of impervious surfaces (roof and paved areas representing approximately 70% of the site area) and 1.31 acres of pervious surfaces (grass area representing approximately 30% of site area) over which stormwater would flow.

Runoff from nearby roads and parking areas can carry contaminants including various metals, petroleum products, sand and salt from deicing, and other compounds. Any runoff generated on-site would be collected in drywells where it would infiltrate in the soils beneath the site. The pollutants that may be released from the use of these surfaces would be derived exclusively from automotive residuals. Ordinary soil bacteria readily degrade most petroleum compounds that reach the ground. Trace metals are usually bound up in the organic material of the soil.

Groundwater is approximately 40 feet below grade. Consequently, very little if any stormwater contaminants would be expected to reach groundwater. The potential impact of stormwater on the soils and groundwater is therefore expected to be minimal.

Proposed Mitigation – The applicant intends to install 102,000 cubic feet of storage to collect and recharge stormwater for the proposed project (51 12-foot drywells with an effective depth of 20 feet each will provide 1,020 linear feet/102,000 cubic feet of storage – exceeding the required 1,000.9 linear feet/100,090 cubic feet of storage). The proposed system would be able to handle an eight-inch rainfall event.

3.3. Impact on Plants and Animals

Existing Conditions – The site is currently fully developed, with a mix of trees and shrubs typical of a multi-family suburban property.

Potential Impacts of Proposed Project – The site would be fully developed, featuring a combination of existing trees (primarily along Middle Neck Road) and shrubs (primarily adjacent to the existing buildings) along with newly installed trees and shrubs (see Figure 2-9).

Proposed Mitigation - None required.

3.4. Impact on Agricultural Land Resources

There are no agricultural land resources on the project site.

3.5. Impact on Aesthetic Resources

Existing Conditions – The current site is developed with a 119-unit apartment complex. A photograph of the existing property is provided below.

Figure 3-1: Existing View from Middle Neck Road

Figure 3-2: Existing View from Sidewalk (corner of Millbrook Court & Middle Neck Road)

Figure 3-3: View from Rear of Property (NW Corner)

Figure 3-4: View from North Parking Lot

Figure 3-5: View from South Parking Lot

Figure 3-6: View from South Driveway

Potential Impacts of Proposed Project – The visual character of the site would change as a result of development. The existing 119-unit apartment complex would be renovated to provide a total of 186 residential units. Several multi-family buildings of similar height are located in the vicinity of the proposed project. These buildings include: Versailles Court (260 Middle Neck Road), 1 Wooleys Lane, the Hadley Arms apartments (6-8 Wooleys Lane) and 221 Middle Neck Road.

Proposed Mitigation – No mitigation is required.

3.6. Impact on Critical Environmental Areas

There are no critical environmental areas on the project site.

3.7. Impact on Transportation

3.7.1. Traffic

A Traffic Study prepared by Mulryan Engineering, P.C. is provided in Appendix C and is summarized below.

Existing Conditions – The following provides a description of the key roadways located in proximity to the subject site.

- Middle Neck Road provides two lanes in each direction and provides for onstreet parking. Middle Neck Road is located to the east of the subject property. Middle Neck Road is under the jurisdiction of the Nassau County Department of Public Works.
- Old Mill Road is located just north of the subject site. Old Mill Road connects to Bayview Avenue to the west.
- Bayview Avenue runs parallel to Middle Neck Road and is one of the key routes within the area. Bayview Avenue provides two lanes in each direction with turn lanes at key intersections. The cross section of Bayview Avenue changes to one lane in each direction between Cedar Drive and Old Mill Road.
- Piccadilly Road is located opposite Old Mill Road at the intersection with Middle Neck Road. Piccadilly Road is a local roadway providing one lane in each direction.
- Wooleys Lane also provides one lane in each direction. The intersection of Wooleys Lane and Middle Neck Road is controlled by a traffic signal located along the site frontage.
- Clover Drive is under the jurisdiction of the Village of Great Neck Estates.

• Allenwood Road is a local roadway under the jurisdiction of the Town of North Hempstead.

The signalized intersections in this area are under the jurisdiction of the Nassau County Department of Public Works.

The area is served by the Long Island Railroad and two Nassau Inter-County Express (NICE) bus routes. Theses bus routes are the N57 Great Neck Loop and the N58 Great Neck Railroad Station-Kings Point. The N57 bus route travels on Middle Neck Road directly in front of the subject site. The N58 bus route travels on Steamboat Road directly in front of the subject site turning onto or off of Middle Neck Road.

Potential Impacts of Proposed Project – The proposed site will maintain the existing site driveways. The site has one driveway to the north, one in the center of the property and one to the south. The central driveway is known as Millbrook Court.

Following redevelopment, the north and south driveways will be reconfigured. The south driveway will allow entrance only traffic flow from Middle Neck Road. The north driveway will permit exit only traffic flow onto Middle Neck Road. The center driveway/Millbrook Court will maintain two way traffic flow.

The site is anticipated to generate a maximum of 115-trips during the evening peak hour (75-entering and 40-exiting the site).

During the peak hour the proposed site is anticipated to generate one to two trips per minute in any direction.

Based on the low traffic volume increases volumes due to the proposed project, the proposed project should have no perceptible impacts to the surrounding roadway network, with the exception of the North Site Access.

Proposed Mitigation – As part of the redevelopment of this project the North Site Access will become the main exit for the complex. The southbound stop line on Middle Neck Road, at the intersection with Wooleys Lane, is located approximately 65 feet south of the driveway. Approximately six vehicles can queue at the signal (within the two southbound lanes) before blocking the site driveway. It is recommended that "Do Not Block The Box" pavement markings and signage be installed at this location.

3.7.2. Parking

Off-site parking counts of the surrounding area were performed during the three peak periods. Parking observations were conducted on Tuesday, May 12, 2015 between

the hours of 10:00 pm and 11:30 pm. These hours reflect peak demand associated with residential uses. In addition to the parking provided on the subject site parking counts were conducted on Middle Neck Road from Old Mill Road to Clover Drive (on the west) and from Piccadilly Road to Allenwood Road (on the east).

The results of the parking study show that limited on street parking is available in proximity to the subject site in the overnight hours. A minimum of 18 parking spaces in total were available on-site in the north and south parking lots. The parking spaces along Millbrook Court were found to be 100% occupied during these observations.

The parking generation of the proposed development was calculated using the ITE ITE *Parking Generation* manual. Based on the ITE parking generation data, the existing complex consisting of a total of 119 apartment units is anticipated to generate 147 parked vehicles during peak demand. Of these vehicles approximately 13 would need to park off-site.

Based on the ITE parking generation data, the proposed complex consisting of a total of 186 apartment units is anticipated to generate 230 parked vehicles during peak demand. Peak parking demand for residential developments occurs during the overnight hours between 10:00 pm and 5:00 am. The site plans prepared by NDA Architects for the proposed project provides for a total of 314 parking spaces.

Required parking for the proposed project was calculated using the following method: For the 101 new units, parking will comply with VGN Code§ 575-155 B.(1)(a), which requires multi-family dwellings to provide two parking spaces for each one-bedroom and two-bedroom unit and three parking spaces for each three-bedroom unit. Therefore, the new units are required to provide 218 new parking spaces.

The existing apartment complex provides approximately 1.13 parking spaces for each apartment unit (134 parking spaces/119 units). Upon completion of the project the site will provide 1.69 parking spaces per unit (314 parking spaces/186 units). The proposed site provides ample parking to accommodate the anticipated demand. Given the increase in on-site parking spaces, the redevelopment of the site is anticipated to reduce on street parking demand to zero in proximity of the site. Based on the statistics compiled by the ITE, the proposed site will have a peak occupancy rate of approximately 75%.

 24^7 of the 314 on-site parking spaces provided will be in tandem with another parking space. Tandem parking is subject to the review and approval of the Board of Trustees as per VGN Code:§ 575-155 B.(1)(d), with the condition that all parking spaces that are in tandem with each other shall be assigned to the same unit, as will be the case for the tandem parking spaces in this complex. Tandem parking has been incorporated into other projects in the Village such as the Versailles apartment complex located directly to the north of the subject site. The tandem parking utilized by the Versailles apartment complex received approval by Board of Trustees.

Proposed Mitigation – No mitigation is proposed as no significant adverse impacts are anticipated.

3.8. Noise and Odor Impacts

Existing Conditions – There are currently minor noise levels and odors associated with the existing residential and institutional uses.

Potential Impacts of Proposed Project – A residential apartment building would create noise levels and odors typical of other multi-family developments in the local area.

Proposed Mitigation – No mitigation is proposed as no significant adverse impacts are anticipated.

3.9. Impact on Public Health

The redevelopment of an existing apartment complex would not involve impacts to public health.

3.10. Impact on Growth and Character of Community or Neighborhood

3.10.1. Land Use

Existing Conditions – The land uses immediately surrounding the property are primarily residential and institutional. Immediately to the north of the project site, there is a multi-family residential building, Versailles Court (260 Middle Neck Road). To the east of the project site, there are also several multi-family residential buildings and an institutional/religious building. These buildings include: 1 Wooleys Lane, the Hadley Arms apartments (6-8 Wooleys Lane), 221 Middle Neck Road and Shaare Zion of Great Neck (225 Middle Neck Road). Immediately south of the

⁷ Note: The number of tandem parking spaces has been increased from 22 to 24. Approval of tandem parking spaces is subject to Board of Trustees approval.

project site is another institutional/religious building, Young Israel of Great Neck (236 Middle Neck Road). To the west of the project site, land use is predominately single-family residential. There is also a narrow parcel of land dedicated to utility/public water supply that runs just west of the project site's westernmost property line.

Potential Impacts of Proposed Project - The proposed project would not change the land use of the subject property. The redevelopment of an existing apartment complex would be consistent with the surrounding area's numerous multi-family residential and institutional uses. The project would not result in any perceptible impact to the level of service on the surrounding roadway network (with the exception of the North Site Access as discussed in Section 3.7.1.) and would improve the visual environment.

Mitigation Required - There is no mitigation required as the proposed use is entirely compatible with existing uses. That is, the proposed use is a residential apartment building with many other multi-family residential buildings in the immediate vicinity. Other nearby uses, including institutional and single-family residential uses, are compatible and complementary with apartment complexes. A significant number of local residents use alternative methods of transportation, including: commuter train, local bus, walking and bicycling. The project's proximity to the Great Neck LIRR station (less than one mile north) encourages these alternative modes of transportation.

3.10.2. Zoning

Existing Conditions – The project site is located in the Residence E or Apartment zoning district and will utilize incentives available within the Middle Neck Road Multifamily Incentive Overlay District (MNR-MIO). § 575-285 B. of the Village of Great Neck Code describes the MNR-MIO district boundaries as follows: "The boundaries of said district, as shown on the Building Zone Map of the Village of Great Neck, shall be coterminous with the boundaries of the Residence E District." Adjacent properties to the north and east along Middle Neck Road are also zoned Residence E (Apartment District). To the west of the project site, properties are zoned Residence A. To the south of the project site, zoning is controlled by the Village of Great Neck Estates with properties zoned Residence B and Business D.

Potential Impacts of Proposed Project – The applicant is applying to redevelop a residential apartment building in the Residence E or Apartments District and utilize incentives available within the MNR-MIO.

Following completion, the proposed project would be similar to the many multifamily buildings in the area, including adjacent properties to the north and east of the project site.

The following table outlines compliance with Village zoning requirements.

Requirement	Compliance		
§ 575-286 Use. A building may be erected, altered, or used and a lot or premises may be used for any of the purposes set forth in the underlying district.	The proposed project is a multifamily dwelling, which is permitted in the underlying zoning district (Residence E or Apartments District).		
 § 575-287 Development incentives. A. Pursuant to the powers set forth in Village Law § 7-703, in recognition of the opportunities to advance a specific physical, cultural, and/or social policy of the Village, in accordance with the Village's Comprehensive Plan, as set forth in this chapter, in coordination with such other community planning mechanisms and/or land use techniques as may be available and appropriate, if any, where an applicant proposes such an opportunity that the Board of Trustees may, from time to time, by resolution, find appropriate and that meets the criteria herein, the Board of Trustees may approve adjustments to any zoning restrictions set forth in this chapter, other than as to use, with such limitations as may be set forth more particularly with regard to the incentive sections for the zoning district within which the premises are located. B. In determining whether or not to grant the adjustment, the Board of Trustees shall consider the following: (1) The extent and dollar value of the proposed amenity; (2) The public costs that would otherwise be required to effect the proposed amenity; and (3) The improvement to the immediate neighborhood and/or the Village as a whole from the proposed amenity. C. Payment in lieu of community amenities. (1) At the request of the applicant or on its own determination that the identified amenities to the Village are not immediately feasible or otherwise not practical for the applicant to provide, the Board of Trustees may require, in lieu of 	The applicant agrees to provide a community amenity or payment in lieu of a community amenity based on the discretion of the Board of Trustees.		

 Table 3-1: Middle Neck Road Multifamily Incentive Overlay District Requirements

 the identified amenities, a payment to the Village of a sum determined by the Board of Trustees. Alternatively, the Board may choose to accept a partial amenity and partial payment in lieu of such proposed amenity. If cash is accepted in lieu of a community amenity, provision shall be made for such sum to be deposited in a trust fund to be used by the Board of Trustees exclusively for specific community amenities that could be applied throughout the Village as authorized by the Board of Trustees. (2) Any payment in lieu of community amenities must be received prior to the issuance of a building permit for the construction of the proposed development. 	
§ 575-288 Limitations on incentives. No incentive shall be granted for an attached townhome or a multifamily dwelling in	
 contravention of any of the following: A. The maximum height for a townhome shall not exceed 30 feet or 22 feet at the eaves. B. No townhome building shall contain more than six townhomes. C. The maximum length of a townhome building shall not exceed 204 feet. D. No horizontal plane of any façade of a townhome building shall exceed 88 feet without a change or break in said plane of at least 10 feet. E. The maximum height for a multifamily dwelling shall not exceed four stories or 42 feet with an area on the roof for recreational use by the tenants of the dwelling (a roof deck). If a roof deck is permitted, it shall be limited to the following restrictions: (1) The roof deck shall not exceed 50% of the roof area. (2) The use of the roof deck shall be limited to the residents of the building and their guests. (3) There shall be no barbequing or other cooking on the roof deck. (4) There shall be no lights, permanent or temporary, on the roof deck other than as approved on the site plan. (5) The roof deck shall be for communal use, with no private areas for individual residents. (6) The roof deck shall have only one lobby, whether for an elevator, a staircase, or both, which shall not exceed an area of 100 square feet. The area of the elevator and/or staircase shall not be considered as part of the lobby for the purpose of 	The proposed project will shall conform to the requirements (§ 575-288 E-G) for multifamily dwellings, as described below. The proposed project will have a maximum building height of 42'. Proposed density will be approximately 42.8 dwelling units per acre. The front yard of the proposed project is approximately 22'7" feet from the property line.

limitation. F. The maximum density for a multifamily dwelling shall not exceed 48 dwellings per acre. G. The minimum front yard shall be 10 feet from the property line and 15 feet from the curb. No incentive shall be given that reduces the ten-foot setback from the property line unless there is a sufficient area of not less than 10 feet between the building and the sidewalk for a landscape buffer (which may be in whole or in part on Village property and which will be landscaped and	
maintained by the property owner).	
§ 575-289 Incentive procedures. Applications seeking increased density or modification of dimensional standards as part of this district's incentive zoning framework shall comply with the procedural requirements outlined in Article XXXI.	The proposed density and dimensional standards comply with the requirements outlined above in § 575-288 of Article XXXII.

Requirement	Compliance
Requirement § 575-105 Use. A building may be erected, altered, or used and a lot or premises may be used for any of the purposes set forth in this section and for no other: A. Multifamily dwellings, subject to site plan approval by the Board of Trustees. B. Tournhomme, guidant to gite approval by the context t	Compliance
 B. Townhomes, subject to site approval by the Board of Trustees. C. Single-family detached dwellings, conforming to all the provisions of Article VIII. D. House of worship or other building used exclusively for religious purposes, parish house, parochial and nonprofit private school when authorized by the Board of Appeals pursuant to the provisions of § 575-190 of this chapter. E. Regularly organized institution of learning approved by the State Board of Regents and supported by public funds, a public library, or public art gallery. F. Government or municipal building, for the administration of or service rendered by the Village government. G. Municipal park, for recreational use. H. Accessory private garage, detached or attached to or within the main building, for the parking of vehicles used for the residential use of the main building. I. Accessory use on same lot, including, but not limited to: 	The proposed project is a multifamily dwelling.
 (1) Real estate office for the management, marketing, and/or sales of the units. (2) Indoor and outdoor recreation facilities, including indoor swimming pools, spas, 	

Table 3-2: Residence E	(Apartments District)	Zoning Requirements
	(

tennis courts, clubhouses, pool houses, recreation and/or fitness centers, business centers, meeting spaces, and similar facilities, provided that such facilities are planned as an integral part of the principal use and are for the sole use of the residents of such principal use and their guests. (3) Off-street parking areas and garages. § 575-106 Height.	
 A. The maximum height for a townhome shall not exceed 30 feet or 22 feet at the eaves. B. The maximum height for a multifamily dwelling shall not exceed 31 feet. C. In the case of a building other than one used for dwelling purposes, the maximum height shall not exceed three stories or 31 feet, except for a spire, dome, or belfry on a house of worship. D. The following encroachments above said maximum heights are hereby permitted: (1) Parapets, not exceeding three feet in vertical distance from base to the highest point or the minimum height required by the New York State Building Code for such parapets, whichever is greater. (2) Stairwell and elevator lobbies, water tanks, chimneys, heating and airconditioning apparatus, or other mechanical equipment projections occupying less than 10% of the area of the roof and not exceeding 12 feet in vertical distance from base to the highest point. (3) Safety railings or walls required by the New York State Building Code to enclose outdoor living space or decks, not exceeding the minimum height required by the New York State Building Code for such railings or walls. 	The proposed building is 42 feet in height. However, a building height of 42' is permitted within the MNR-MIO district. See Table 3-1 above.
§ 575-107 Lot sizes for multifamily dwellings and	
townhomes. No multifamily dwelling or townhome shall be constructed and no existing building shall be converted for use as a multifamily dwelling or townhome on a lot containing an area of less than 20,000 square feet.	The project site is greater than 20,000 square feet (189,481.6 square feet or 4.35 acres in total).
 § 575-108 Street frontage for multifamily dwellings and townhomes. No multifamily dwelling or townhome shall be constructed and no existing building shall be converted for use as a multifamily dwelling or townhome on a lot having street frontage of less than 150 feet on one street. For clarification, for a corner lot, 70 feet on one street and 80 feet on another street would not meet the one-hundred-fifty- foot requirement. 	The proposed project has street frontage greater than 150 along Middle Neck Road (approximately 500 feet).

§ 575-109 Floor area for multifamily dwellings	
and townhomes.	
A. No multifamily dwelling shall provide habitable	The proposed multifamily dwelling units will
floor area of less than 600 square feet per unit.	all be greater than 600 square feet per unit.
B. No townhome shall provide habitable floor area	
of less than 1,000 square feet per unit.	
§ 575-110 Density for multifamily dwellings and	
townhomes.	
A. The maximum density for a multifamily dwelling	The proposed project would result in a density
	of 42.8 dwelling units per acre.
shall be at the ratio of 43 dwelling units per acre.	of 42.8 dwenning units per acre.
B. The maximum density for townhomes shall be at	
the ratio of 15 dwelling units per acre.	
§ 575-111 Building area for multifamily	
dwellings and townhomes.	
A. The building area for multifamily dwellings and	
townhomes shall not exceed 60% of the lot area.	
B. The building area for all other uses shall not	The building area of the proposed project is
exceed 35% of the lot area.	72,152.7 square feet, which represents
C. In the discretion of the Board of Trustees, as part	approximately 38.1% of the 189,481.6 square
of its site plan review, the building area of any	foot lot.
structure used solely or primarily for parking,	
whether attached to or detached from the principal	
building, may be excluded in whole or in part from	
the maximum building area provisions of this	
section.	
§ 575-112 Front yards.	
A. There shall be a front yard, the depth of which	
shall not be less than 15 feet from the property line	
and 21 feet from the curb, unless otherwise	The former and of the many set in the set in
approved by the Board of Trustees.	The front yard of the proposed project is
B. On a corner lot, a front yard shall be required on	approximately 22'7" feet from the property
each street, each having a depth of not less than 15	line.
feet from the property line and 21 feet from the	
curb, unless otherwise approved by the Board of	
Trustees.	
§ 575-113 Side yards.	
The minimum side yard setback for each side yard	
shall be 10 feet, which area shall be landscaped,	The minimum side yard of the proposed project
except for necessary access drives, parking, and	is approximately 25'7" feet from the property
walkways, in accordance with a plan approved as	line.
part of the site plan approval.	
par or the bite plan approval.	
§ 575-114 Rear yards.	The rear yard of the proposed project is
There shall be a rear yard, the depth of which shall	approximately 29 feet from the property line
not be less than 25 feet.	(same as existing conditions).
§ 575-115 Distance between adjacent buildings.	
A. The minimum distance between buildings shall	
be 10 feet.	
B. Encroachments not exceeding two feet from each	0 feet new to existing (same as existing
building shall be permitted within said ten-foot	conditions).
distance.	
C. In no event shall the distance between such	
encroachments be less than eight feet.	

§ 575-115.2 Landscaping and buffers.			
As part of the site plan approval, the Board of	A landscape plan for the proposed project is		
Trustees shall require a landscape plan that provides	A landscape plan for the proposed project is provided in Section 2 (Figure 2-9).		
adequate buffer and appropriate design treatment for	provided in Section 2 (Figure 2-9).		
the uses of the abutting properties.			
§ 575-115.3 Permitted encroachments.			
The following encroachments into required yards			
are hereby permitted:			
A. Cornices, eaves, gutters, and chimneys projecting			
not more than 24 inches.			
B. Bay windows not more than six feet in width and			
one story high, projecting not more than three feet.			
C. One-story open porch or terrace, projecting not			
more than five feet into a minimum front yard.			
D. One-story enclosed vestibule, not greater than	N/A		
nine feet in width, projecting not more than 5 $1/2$			
feet into a minimum front yard.			
E. One-story open porch or terrace, which shall			
project into a rear yard not more than 10 feet.			
F. Unenclosed and unroofed platform and steps,			
designed to provide safe access to grade from			
service entrance doors, projecting not more than			
three feet six inches into a minimum side yard. The			
maximum horizontal surface of any encroaching			
platform shall not exceed 14 square feet.			
§ 575-115.4 Accessory structures.			
A. Fences shall not exceed four feet in height,			
except where a lot or premises in this district is			
contiguous with a lot or premises in a Residence A,			
A-1, B, C or D District, subject to the limitations set			
forth in § 575-150 of this chapter.	N/A		
B. Retaining walls shall not extend above the	IN/A		
ground that they support.			
C. Stationary outdoor fireplaces shall be located at			
least 10 feet from property lines and shall not			
exceed five feet in height.			
D. Pergolas shall not exceed 10 feet in height.			
§ 575-115.5 Accessory buildings.			
A. Accessory buildings, except as otherwise			
provided in this article, shall not be over 15 feet in			
height at their highest point and shall not occupy			
more than 40% of the rear yard.			
B. Unless otherwise provided in this article,			
accessory buildings or structures shall be located in the near word and shall be not less than 10 feet			
the rear yard and shall be not less than 10 feet	No accessory buildings are proposed.		
distant from the main building and not less than			
three feet distant from the rear and side lot lines.			
C. Unless otherwise provided in this article,			
accessory buildings or structures on corner lots 100			
feet or less in depth shall be located as far as			
possible from the front property lines.			
D. No accessory buildings or structures, except			
fences or retaining walls as hereinabove provided in			
this article, shall be erected within 20 feet of a			

residential building on an adjoining lot. § 575-115.6 Design standards for multifamily	
dwellings and townhomes. A. For any multifamily or townhome development, the site plan application shall consider any visual impacts of the proposed development on adjacent properties and the surrounding community, including, but not limited to shadowing effects and those guidelines specified in § 575-179. B. In addition, building frontage along a public street should be designed with principal access to the street. If driveways and indoor garages are provided in that area, there should be sufficient space for at least one vehicle to park in the driveway without blocking the sidewalk. Principal pedestrian access should be provided to the multifamily building or townhome from the street.	A. Aerial photography/renderings of the proposed project are provided (Figure 2-16). B. The building frontage of the project along Middle Neck Road will be designed with principal access to the street. There will be sufficient space for vehicle parking in the driveways without blocking the sidewalk. Principal pedestrian access will be provided to the multifamily building from Middle Neck Road.

Proposed Mitigation – No mitigation is proposed as no significant adverse impacts are anticipated.

3.10.3. Growth-Inducing Aspects of the Proposed Project

Existing Conditions – The site is currently developed as a multi-family apartment complex.

Potential Impacts of Proposed Project – The redevelopment of the Millbrook Apartments is expected to induce minimal population growth that will not require any major infrastructure improvements. The residents would be anticipated to utilize existing retail and commercial facilities within the Village but would not be expected to create a demand for additional facilities.

Proposed Mitigation – No mitigation is proposed as no significant adverse impacts are anticipated.

3.10.4. Demand for Additional Community Services

Emergency Services

Existing Conditions – Police protection is provided by the Nassau County Police Department, Third Precinct, located at 214 Hillside Avenue, Williston Park, NY 11596. Fire protection is the responsibility of the Great Neck Alert Fire Company, located at 555 Middle Neck Road, Great Neck, NY 11023. Ambulance service is

provided by the Vigilant Engine & Hook & Ladder Company, located at 83 Cutter Mill Road, Great Neck, NY 11021. Health care is available at the North Shore University Hospital on Community Drive, less than three (3) miles from the proposed apartment complex and Long Island Jewish Hospital, which is less than four (4) miles away on Lakeville Road.

Potential Impacts of Proposed Project – Letters were sent to the Great Neck Alert Fire Company and the Nassau County Police Department, Third Precinct, on March 19, 2015. The Nassau County Police Department, Third Precinct has indicated that they will be able to serve the subject property. A letter was sent to Vigilant Engine and Hook & Ladder Company on March 20, 2015. Follow up letters were sent to both the Great Neck Alert Fire Company and the Vigilant Engine and Hook & Ladder Company on December 10, 2015, June 24, 2016 and July 25, 2017. Copies of all letters and responses are provided in Appendix B. A project description, location map and site plan were also enclosed. In addition, a Fire Truck Access Path Plan (see Figure 2-11) has been developed to ensure that the site is accessible to a typical 49foot fire truck.

Responses have not been received to date from the Great Neck Alert Fire Company or Vigilant Engine and Hook & Ladder Company. When these letters are received they will be provided to the Village.

Proposed Mitigation – No mitigation is anticipated to be required.

Schools

Existing Conditions – Based upon the Residential Demographic Multipliers issued by Rutgers University, Center for Urban Policy Research for New York, it is estimated that approximately 12 school-age children in public school could be residing onsite under existing conditions. However, based on information provided by the applicant, only 10 school-age children currently reside on-site.

Potential Impacts of Proposed Project – Using the Residential Demographic Multipliers issued by Rutgers University, Center for Urban Policy Research for New York, the redeveloped Millbrook Apartments could become the home to approximately 29 school-aged children in public school as shown in Table 3-3 below. The Rutgers multipliers assume that 20% of the children in a district attend private schools.

Table 3-3: Public School-Age C	Children Projected for	Millbrook Apartments
--------------------------------	------------------------	-----------------------------

Rate		All	K-2	3-6	7-9	10-12
-	1 br/studio	0.07	0.02	0.02	0.01	0.01
-	2 br	0.16	0.05	0.05	0.04	0.03
-	3 br	0.63	0.14	0.20	0.12	0.17
Proposed		All	K-2	3-6	7-9	10-12
101	1 br/studio	7.07	2.02	2.02	1.01	1.01
68	2 br	10.88	3.40	3.40	2.72	2.04
17	3 br	10.71	2.38	3.40	2.04	2.89
То	tal Proposed	28.66	7.80	8.82	5.77	5.94

District enrollment for the 2015-2016 school year was 6,394 in grades K-12.⁸ A net increase of 19 new students would represent an increase of less than three-tenths of one percent in enrollment. A letter was sent to the Great Neck School District, on March 24, 2015 requesting the ability of the District to accommodate the potential increase in enrollment from the redeveloped apartment complex (a copy of the letter and the district's response is provided in Appendix B).

Proposed Mitigation – With few new students projected (a potential net increase of 19 students), cost and resource impacts to the school district would be minimal as there should not be a need for additional classrooms or teachers.

Utilities

Water

Existing Conditions - The Water Authority of Great Neck North provides water service to the existing apartment complex. The estimated existing water use, based upon water records provided by the applicant, is approximately 11,500 gallons per day.

Potential Impacts of Proposed Project – The proposed project would increase on-site water consumption. The projected water use for the proposed project is approximately 47,400 gallons per day, an estimated net increase of 35,900 gallons per day (see Table 3-4 below).

Letters requesting water availability were sent to the Water Authority of Great Neck North on March 24, 2015, June 29, 2016 and July 25, 2017 (Appendix B). It is anticipated that the Water Authority of Great Neck North will have sufficient capacity exists to accommodate the proposed increase in water usage. The applicant will pay for the design and construction of the connection to the Water Authority.

Table 3-4: Projected Water Use/Sewage Flow

⁸ NYS Education Department. *Great Neck UFSD Enrollment (2013 - 14).* Updated 2015">http://data.nysed.gov/enrollment.php?year=2014&instid=800000049062>Updated 2015.

Proposed	Quantity	Rate (gpd/unit)	Gallons per day
1 br/studio	101 units	200	20,200
2 br	68 units	300	20,400
3 br	17 units	400	6,800
		Total Proposed	47,400
		Total Existing	11,500
		Estimated Net Increase	35,900

Proposed Mitigation – Water conservation techniques would be incorporated into the design of the kitchens and bathrooms including low-flow showerheads, faucets, and toilets. It is anticipated that drip irrigation will be used for all planted areas on-site.

Sewage Disposal

Existing Conditions – The property is located within the Great Neck Water Pollution Control District. The estimated average sewage flow generated by the existing uses is approximately 11,500 gallons per day, based on water usage records provided by the applicant.

Potential Impacts of Proposed Project – Wastewater is projected to be roughly equal to water consumption. The estimated future average sewage flow to be generated by the residential development is approximately 47,400 gpd (see Table 3-4 above). This represents a net increase of 35,900 gpd above the existing apartment complex. Letters requesting sewer availability were sent to the Great Neck Water Pollution Control District on March 24, 2015 and July 25, 2017 (Appendix B). It is anticipated that the Great Neck Water Pollution Control Department has capacity at the treatment plant to accept sewage flow from the proposed project. When this letter is received it will be provided to the Village.

Proposed Mitigation – The applicant will pay for the design and construction of the connection to the sewer district. Sewage flow would be moderated through the use of the water conservation methods described in the section on Water, above.

Solid Waste Disposal

Existing Conditions – Solid waste is currently generated by the existing residential apartment complex. Based on the existing unit count, the existing property is

estimated to generate approximately 640 pounds of solid waste per day (160 bedrooms in total x 4 pounds per bedroom per day).⁹

Potential Impacts of Proposed Project – For the proposed project, solid waste production is estimated at four (4) pounds/bedroom per day. In total, the project is estimated to generate approximately 1,152 pounds of solid waste per day which would be collected by a private carter and disposed of at a permitted solid waste management facility (288 bedrooms in total x 4 pounds per bedroom per day).

Proposed Mitigation – Each building will have a garbage chute leading to a trash compactor system. Solid waste would be collected by a private carter and disposed of at a permitted solid waste management facility.

Electricity

Existing Conditions – PSEG currently supplies energy to the existing commercial and residential uses on site and would continue to provide electricity to the new apartment complex.

Potential Impacts of Proposed Project – As a result of the net increase in residential units (67 additional units), an increase in energy consumption would occur as a result of the redevelopment of Millbrook Apartments. The major energy demands of the apartments would be for heating, air conditioning, and lighting.

Proposed Mitigation – Modern energy efficient (Energy Star) appliances and building materials would be incorporated into the design of the apartments.

⁹ Technical Bulletin #85-6, Basic Data: Solid Waste Amounts, Composition and Management Systems, National Solid Waste Management Association, October 1985.

APPENDICES INFORMATION

Appendix A - Full Environmental Assessment Form

Appendix B - Correspondence

Appendix C - Traffic Impact Study

APPENDIX A

ENVIRONMENTAL ASSESSMENT FORM

Full Environmental Assessment Form Part 1 - Project and Setting

Instructions for Completing Part 1

Part 1 is to be completed by the applicant or project sponsor. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification.

Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information; indicate whether missing information does not exist, or is not reasonably available to the sponsor; and, when possible, generally describe work or studies which would be necessary to update or fully develop that information.

Applicants/sponsors must complete all items in Sections A & B. In Sections C, D & E, most items contain an initial question that must be answered either "Yes" or "No". If the answer to the initial question is "Yes", complete the sub-questions that follow. If the answer to the initial question is "No", proceed to the next question. Section F allows the project sponsor to identify and attach any additional information. Section G requires the name and signature of the project sponsor to verify that the information contained in Part 1 is accurate and complete.

A. Project and Sponsor Information.

Name of Action or Project:			
Project Location (describe, and attach a general location map):			
Brief Description of Proposed Action (include purpose or need):			
Name of Applicant/Sponsor:	Telephone:		
	E-Mail:		
Address:			
City/PO:	State:	Zip Code:	
Project Contact (if not same as sponsor; give name and title/role):	Telephone:		
	E-Mail:		
Address:			
City/PO:	State:	Zip Code:	
Property Owner (if not same as sponsor):	Telephone:	L	
	E-Mail:		
Address:			
City/PO:	State:	Zip Code:	

B. Government Approvals

B. Government Approvals, Funding, or Sponsorship.	("Funding"	'includes grants,	loans, t	tax relief,	and any c	other forms	of financial
assistance.)							

Government En	tity	If Yes: Identify Agency and Approval(s) Required		ation Date or projected)
a. City Council, Town Board, or Village Board of Trustee				
b. City, Town or Village Planning Board or Commis	□ Yes □ No sion			
c. City Council, Town or Village Zoning Board of A	□ Yes □ No ppeals			
d. Other local agencies	□ Yes □ No			
e. County agencies	□ Yes □ No			
f. Regional agencies	□ Yes □ No			
g. State agencies	□ Yes □ No			
h. Federal agencies	□ Yes □ No			
i. Coastal Resources.<i>i</i>. Is the project site within	a Coastal Area, o	or the waterfront area of a Designated Inland Wa	terway?	□ Yes □ No
<i>ii</i> . Is the project site locate <i>iii</i> . Is the project site within		with an approved Local Waterfront Revitalization Hazard Area?	on Program?	□ Yes □ No □ Yes □ No

C. Planning and Zoning

C.1. Planning and zoning actions.	
 Will administrative or legislative adoption, or amendment of a plan, local law, ordinance, rule or regulation be the only approval(s) which must be granted to enable the proposed action to proceed? If Yes, complete sections C, F and G. If No, proceed to question C.2 and complete all remaining sections and questions in Part 1 	□ Yes □ No
C.2. Adopted land use plans.	
a. Do any municipally- adopted (city, town, village or county) comprehensive land use plan(s) include the site where the proposed action would be located?	□ Yes □ No
If Yes, does the comprehensive plan include specific recommendations for the site where the proposed action would be located?	□ Yes □ No
 b. Is the site of the proposed action within any local or regional special planning district (for example: Greenway Brownfield Opportunity Area (BOA); designated State or Federal heritage area; watershed management plan; or other?) If Yes, identify the plan(s): 	□ Yes □ No
 c. Is the proposed action located wholly or partially within an area listed in an adopted municipal open space plan, or an adopted municipal farmland protection plan? If Yes, identify the plan(s): 	□ Yes □ No

C.3. Zoning	
a. Is the site of the proposed action located in a municipality with an adopted zoning law or ordinance. If Yes, what is the zoning classification(s) including any applicable overlay district?	□ Yes □ No
b. Is the use permitted or allowed by a special or conditional use permit?	□ Yes □ No
c. Is a zoning change requested as part of the proposed action?If Yes,<i>i</i>. What is the proposed new zoning for the site?	□ Yes □ No
C.4. Existing community services.	
a. In what school district is the project site located?	
b. What police or other public protection forces serve the project site?	
c. Which fire protection and emergency medical services serve the project site?	
d. What parks serve the project site?	

D. Project Details

D.1. Proposed and Potential Development	
a. What is the general nature of the proposed action (e.g., residential, induced components)?	ustrial, commercial, recreational; if mixed, include all
b. a. Total acreage of the site of the proposed action?	acres
b. Total acreage to be physically disturbed?	acres
c. Total acreage (project site and any contiguous properties) owned	
or controlled by the applicant or project sponsor?	acres
c. Is the proposed action an expansion of an existing project or use?	\Box Yes \Box No
<i>i</i> . If Yes, what is the approximate percentage of the proposed expansion square feet)? % Units:	n and identify the units (e.g., acres, miles, housing units,
d. Is the proposed action a subdivision, or does it include a subdivision?	□ Yes □ No
If Yes,	
<i>i</i> . Purpose or type of subdivision? (e.g., residential, industrial, commerc	ial; if mixed, specify types)
<i>ii.</i> Is a cluster/conservation layout proposed?	□ Yes □ No
<i>iii</i> . Number of lots proposed?	
<i>iv</i> . Minimum and maximum proposed lot sizes? Minimum	_ Maximum
e. Will proposed action be constructed in multiple phases?	\Box Yes \Box No
<i>i</i> . If No, anticipated period of construction:	months
<i>ii.</i> If Yes:	
• Total number of phases anticipated	·
• Anticipated commencement date of phase 1 (including demoliti	
• Anticipated completion date of final phase	monthyear
Generally describe connections or relationships among phases, i determine timing or duration of future phases:	

f. Does the project	ct include new resid	lential uses?			\Box Yes \Box No
If Yes, show num	bers of units propo				
	One Family	<u>Two Family</u>	Three Family	<u>Multiple Family (four or more)</u>	
Initial Phase					
At completion					
of all phases					
a Doos the prop	and action include	now non residentia	al construction (inclu	ding appansions)?	□ Yes □ No
If Yes,	oseu action menude	new non-residentia	a construction (mere	tunig expansions):	
/	of structures				
<i>ii</i> . Dimensions (in feet) of largest p	roposed structure:	height;	width; andlength	
iii. Approximate	extent of building	space to be heated	or cooled:	square feet	
h Does the prope	osed action include	construction or oth	er activities that wil	l result in the impoundment of any	□ Yes □ No
				agoon or other storage?	- 105 - 116
If Yes,		II J,	, r , , , , , , , , , , , , , , , , , , ,	6	
<i>i</i> . Purpose of the	e impoundment:				
ii. If a water imp	oundment, the prin	cipal source of the	water:	□ Ground water □ Surface water stream	ms \Box Other specify:
<i>iii</i> . If other than w	vater, identify the t	ype of impounded/	contained liquids and	d their source.	
iv Approximate	size of the propose	d impoundment	Volume	million gallons; surface area:	acres
v. Dimensions c	of the proposed dam	or impounding str	ucture:	height; length	
				ructure (e.g., earth fill, rock, wood, cond	crete):
D.2. Project Op					
				uring construction, operations, or both?	\Box Yes \Box No
		ation, grading or in	stallation of utilities	or foundations where all excavated	
materials will r	emain onsite)				
If Yes:	6.1				
i. What is the pu	irpose of the excave	ation or dredging?			
				o be removed from the site?	
	hat duration of time			ged, and plans to use, manage or dispos	a of them
			e excavated of dieds	ged, and plans to use, manage of dispos	e of them.
			cavated materials?		\Box Yes \Box No
If yes, descri	be				
		1 12			
v. What is the to	otal area to be dredg	ged or excavated?	(acres	
		•		acres	
			or dredging?	feet	□ Yes □ No
	avation require blas				
ix. Summarize su	e reclamation goals				
b. Would the pro-	posed action cause	or result in alteration	on of, increase or de	crease in size of, or encroachment	\Box Yes \Box No
into any existi			ch or adjacent area?		
If Yes:					
				vater index number, wetland map numb	
description):					

<i>ii</i> . Describe how the proposed action would affect that waterbody or wetland, e.g. excavation, fill, placen alteration of channels, banks and shorelines. Indicate extent of activities, alterations and additions in so	
<i>iii.</i> Will proposed action cause or result in disturbance to bottom sediments?	□ Yes □ No
If Ves describe	
<i>iv.</i> Will proposed action cause or result in the destruction or removal of aquatic vegetation? If Yes:	\Box Yes \Box No
acres of aquatic vegetation proposed to be removed:	
expected acreage of aquatic vegetation remaining after project completion:	
• purpose of proposed removal (e.g. beach clearing, invasive species control, boat access):	
proposed method of plant removal:	
• if chemical/herbicide treatment will be used, specify product(s):	
v. Describe any proposed reclamation/mitigation following disturbance:	
. Will the proposed action use, or create a new demand for water? f Yes:	\Box Yes \Box No
<i>i</i> . Total anticipated water usage/demand per day: gallons/day	
<i>ii.</i> Will the proposed action obtain water from an existing public water supply?	□ Yes □ No
f Yes:	
Name of district or service area:	
• Does the existing public water supply have capacity to serve the proposal?	\Box Yes \Box No
• Is the project site in the existing district?	□ Yes □ No
• Is expansion of the district needed?	🗆 Yes 🗆 No
• Do existing lines serve the project site?	🗆 Yes 🗆 No
<i>ii.</i> Will line extension within an existing district be necessary to supply the project? Yes:	\Box Yes \Box No
Describe extensions or capacity expansions proposed to serve this project:	
Source(s) of supply for the district:	
<i>iv.</i> Is a new water supply district or service area proposed to be formed to serve the project site? f, Yes:	\Box Yes \Box No
Applicant/sponsor for new district:	
Date application submitted or anticipated:	
Proposed source(s) of supply for new district:	
<i>v</i> . If a public water supply will not be used, describe plans to provide water supply for the project:	
vi. If water supply will be from wells (public or private), maximum pumping capacity: gallons/m	inute.
. Will the proposed action generate liquid wastes?	\Box Yes \Box No
f Yes:	
<i>i.</i> Total anticipated liquid waste generation per day: gallons/day	11 / 1
<i>ii.</i> Nature of liquid wastes to be generated (e.g., sanitary wastewater, industrial; if combination, describe a approximate volumes or proportions of each):	
<i>ii.</i> Will the proposed action use any existing public wastewater treatment facilities? If Yes:	\Box Yes \Box No
Name of wastewater treatment plant to be used:	
Name of district: Data the substant structure to be the substant and the s	
 Does the existing wastewater treatment plant have capacity to serve the project? Is the project site in the original district? 	$\Box \operatorname{Yes} \Box \operatorname{No}$
 Is the project site in the existing district? Is expansion of the district needed? 	□ Yes □ No □ Yes □ No
• Is expansion of the district needed?	\Box Yes \Box No

• Do existing sewer lines serve the project site?	□ Yes □ No
• Will line extension within an existing district be necessary to serve the project?	\Box Yes \Box No
If Yes:	= 105 = 110
Describe extensions or capacity expansions proposed to serve this project:	
<i>iv.</i> Will a new wastewater (sewage) treatment district be formed to serve the project site?	\Box Yes \Box No
If Yes:	
Applicant/sponsor for new district:	
Date application submitted or anticipated:	
What is the receiving water for the wastewater discharge?	
	riging proposed
receiving water (name and classification if surface discharge, or describe subsurface disposal plans):	
vi. Describe any plans or designs to capture, recycle or reuse liquid waste:	
e. Will the proposed action disturb more than one acre and create stormwater runoff, either from new point	□ Yes □ No
sources (i.e. ditches, pipes, swales, curbs, gutters or other concentrated flows of stormwater) or non-point	
source (i.e. sheet flow) during construction or post construction?	
If Yes:	
<i>i</i> . How much impervious surface will the project create in relation to total size of project parcel?	
Square feet or acres (impervious surface)	
Square feet or acres (parcel size)	
<i>ii.</i> Describe types of new point sources.	
iii. Where will the stormwater runoff be directed (i.e. on-site stormwater management facility/structures, adjacent p	properties,
groundwater, on-site surface water or off-site surface waters)?	
If to surface waters, identify receiving water bodies or wetlands:	
If to surface waters, identify receiving water bodies or wetlands:	
 If to surface waters, identify receiving water bodies or wetlands: Will stormwater runoff flow to adjacent properties? 	□ Yes □ No
 If to surface waters, identify receiving water bodies or wetlands: Will stormwater runoff flow to adjacent properties? <i>iv.</i> Does proposed plan minimize impervious surfaces, use pervious materials or collect and re-use stormwater? 	□ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands: Will stormwater runoff flow to adjacent properties? /// iv. Does proposed plan minimize impervious surfaces, use pervious materials or collect and re-use stormwater? f. Does the proposed action include, or will it use on-site, one or more sources of air emissions, including fuel combustion, waste incineration, or other processes or operations?	□ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands: Will stormwater runoff flow to adjacent properties? /// iv. Does proposed plan minimize impervious surfaces, use pervious materials or collect and re-use stormwater? f. Does the proposed action include, or will it use on-site, one or more sources of air emissions, including fuel combustion, waste incineration, or other processes or operations?	□ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: Will stormwater runoff flow to adjacent properties? Will stormwater runoff flow to adjacent properties? Iv. Does proposed plan minimize impervious surfaces, use pervious materials or collect and re-use stormwater? f. Does the proposed action include, or will it use on-site, one or more sources of air emissions, including fuel combustion, waste incineration, or other processes or operations? If Yes, identify: i. Mobile sources during project operations (e.g., heavy equipment, fleet or delivery vehicles) ii. Stationary sources during construction (e.g., power generation, structural heating, batch plant, crushers) iii. Stationary sources during operations (e.g., process emissions, large boilers, electric generation) g. Will any air emission sources named in D.2.f (above), require a NY State Air Registration, Air Facility Permit, or Federal Clean Air Act Title IV or Title V Permit?	□ Yes □ No □ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: Will stormwater runoff flow to adjacent properties? Will stormwater runoff flow to adjacent properties? Iv. Does proposed plan minimize impervious surfaces, use pervious materials or collect and re-use stormwater? f. Does the proposed action include, or will it use on-site, one or more sources of air emissions, including fuel combustion, waste incineration, or other processes or operations? If Yes, identify: i. Mobile sources during project operations (e.g., heavy equipment, fleet or delivery vehicles) ii. Stationary sources during construction (e.g., power generation, structural heating, batch plant, crushers) iii. Stationary sources during operations (e.g., process emissions, large boilers, electric generation) g. Will any air emission sources named in D.2.f (above), require a NY State Air Registration, Air Facility Permit, or Federal Clean Air Act Title IV or Title V Permit?	□ Yes □ No □ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: If V. Does proposed plan minimize impervious surfaces, use pervious materials or collect and re-use stormwater? If Does the proposed action include, or will it use on-site, one or more sources of air emissions, including fuel combustion, waste incineration, or other processes or operations? If Yes, identify: i. Mobile sources during project operations (e.g., heavy equipment, fleet or delivery vehicles) ii. Stationary sources during construction (e.g., power generation, structural heating, batch plant, crushers) iii. Stationary sources during operations (e.g., process emissions, large boilers, electric generation) g. Will any air emission sources named in D.2.f (above), require a NY State Air Registration, Air Facility Permit, or Federal Clean Air Act Title IV or Title V Permit? If Yes:	□ Yes □ No □ Yes □ No □ Yes □ No □ Yes □ No
 If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No □ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No □ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No □ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands:	□ Yes □ No □ Yes □ No □ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: If Ves proposed plan minimize impervious surfaces, use pervious materials or collect and re-use stormwater? If Does the proposed action include, or will it use on-site, one or more sources of air emissions, including fuel combustion, waste incineration, or other processes or operations? If Yes, identify: i. Mobile sources during project operations (e.g., heavy equipment, fleet or delivery vehicles) ii. Stationary sources during construction (e.g., power generation, structural heating, batch plant, crushers) iii. Stationary sources during operations (e.g., process emissions, large boilers, electric generation) g. Will any air emission sources named in D.2.f (above), require a NY State Air Registration, Air Facility Permit, or Federal Clean Air Act Title IV or Title V Permit? If Yes: i. Is the project site located in an Air quality non-attainment area? (Area routinely or periodically fails to meet ambient air quality standards for all or some parts of the year) ii. In addition to emissions as calculated in the application, the project will generate:	□ Yes □ No □ Yes □ No □ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: If Ves, identify: If Yes, identify: If Yes, identify: If Xes, identify: If Yes, identify: If Yes: If	□ Yes □ No □ Yes □ No □ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: If Ves, identify: If Yes, identify: If Yes, identify: If Xes, identify: If Yes, identify: If Yes: If	□ Yes □ No □ Yes □ No □ Yes □ No □ Yes □ No
If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: If to surface waters, identify receiving water bodies or wetlands: If Ves proposed plan minimize impervious surfaces, use pervious materials or collect and re-use stormwater? If Does the proposed action include, or will it use on-site, one or more sources of air emissions, including fuel combustion, waste incineration, or other processes or operations? If Yes, identify: i. Mobile sources during project operations (e.g., heavy equipment, fleet or delivery vehicles) ii. Stationary sources during construction (e.g., power generation, structural heating, batch plant, crushers) iii. Stationary sources during operations (e.g., process emissions, large boilers, electric generation) g. Will any air emission sources named in D.2.f (above), require a NY State Air Registration, Air Facility Permit, or Federal Clean Air Act Title IV or Title V Permit? If Yes: i. Is the project site located in an Air quality non-attainment area? (Area routinely or periodically fails to meet ambient air quality standards for all or some parts of the year) ii. In addition to emissions as calculated in the application, the project will generate:	□ Yes □ No □ Yes □ No □ Yes □ No □ Yes □ No

 h. Will the proposed action generate or emit methane (including, but not limited to, sewage treatment plants, landfills, composting facilities)? If Yes: <i>i</i>. Estimate methane generation in tons/year (metric): <i>ii</i>. Describe any methane capture, control or elimination measures included in project design (e.g., combustion to g electricity, flaring): 	□ Yes □ No
 i. Will the proposed action result in the release of air pollutants from open-air operations or processes, such as quarry or landfill operations? If Yes: Describe operations and nature of emissions (e.g., diesel exhaust, rock particulates/dust): 	□ Yes □ No
 j. Will the proposed action result in a substantial increase in traffic above present levels or generate substantial new demand for transportation facilities or services? If Yes: <i>i</i>. When is the peak traffic expected (Check all that apply): Image: Morning increase in traffic expected (Check all that apply): Image: Morning increase increase increase in traffic expected (Check all that apply): Image: Morning increase incre	□ Yes □ No
 iv. Does the proposed action include any shared use parking? v. If the proposed action includes any modification of existing roads, creation of new roads or change in existing a 	🗆 Yes 🗆 No
 <i>vi.</i> Are public/private transportation service(s) or facilities available within ½ mile of the proposed site? <i>vii</i> Will the proposed action include access to public transportation or accommodations for use of hybrid, electric or other alternative fueled vehicles? <i>viii</i>. Will the proposed action include plans for pedestrian or bicycle accommodations for connections to existing pedestrian or bicycle routes? 	□ Yes □ No □ Yes □ No □ Yes □ No
 k. Will the proposed action (for commercial or industrial projects only) generate new or additional demand for energy? (N/A - Residential Project) If Yes: <i>i</i>. Estimate annual electricity demand during operation of the proposed action: <i>ii</i>. Anticipated sources/suppliers of electricity for the project (e.g., on-site combustion, on-site renewable, via grid/l other): 	□ Yes □ No
<i>iii.</i> Will the proposed action require a new, or an upgrade to, an existing substation?	□ Yes □ No
1. Hours of operation. Answer all items which apply. ii. During Construction: iii. During Construction: iii. During Operations: iii. During Operations: iii. During Operations: Sunday: iii. During Operatio	

m. Will the proposed action produce noise that will exceed existing ambient noise levels during construction, operation, or both?	\Box Yes \Box No
If yes:	
<i>i</i> . Provide details including sources, time of day and duration:	
<i>ii.</i> Will proposed action remove existing natural barriers that could act as a noise barrier or screen?	\Box Yes \Box No
Describe:	
n Will the proposed action have outdoor lighting?	□ Yes □ No
If yes:	
<i>i</i> . Describe source(s), location(s), height of fixture(s), direction/aim, and proximity to nearest occupied structures:	
<i>ii.</i> Will proposed action remove existing natural barriers that could act as a light barrier or screen? Describe:	\Box Yes \Box No
o. Does the proposed action have the potential to produce odors for more than one hour per day?	□ Yes □ No
If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest	
occupied structures:	
p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons)	□ Yes □ No
or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes:	
<i>i</i> . Product(s) to be stored	
<i>ii</i> . Volume(s) per unit time (e.g., month, year)	
<i>iii</i> . Generally describe proposed storage facilities:	
q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides,	□ Yes □ No
insecticides) during construction or operation?	
If Yes: <i>i</i> . Describe proposed treatment(s):	
<i>ii.</i> Will the proposed action use Integrated Pest Management Practices?	\Box Yes \Box No
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal of solid waste (excluding hazardous materials)?	\Box Yes \Box No
If Yes:	
<i>i</i> . Describe any solid waste(s) to be generated during construction or operation of the facility:	
 Construction: tons per (unit of time) Operation : tons per (unit of time) 	
<i>ii.</i> Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste:	
Construction:	
• Operation:	
<i>iii.</i> Proposed disposal methods/facilities for solid waste generated on-site:	
• Construction:	
Operation:	

 i. Type of management or handling of waste proposed for the site (e.g., recycling or transfer station, composting, landfill, or other disposal activities):	s. Does the proposed action include construction or modification of a solid waste management facility?	□ Yes □ No
other disposal activities): <i>ii</i> . Anticipated rate of disposal/processing: •Tons/hourt, if transfer or other non-combustion/thermal treatment, or •Tons/hour, if combustion or thermal treatment <i>iii</i> . If landfill, anticipated site life: years I. Will proposed action at the site involve the commercial generation, treatment, storage, or disposal of hazardous I Yes I No waste? If Yes: <i>i</i> . Name(s) of all hazardous wastes or constituents to be generated, handled or managed at facility: <i>iii</i> . Generally describe processes or activities involving hazardous wastes or constituents: <i>iii</i> . Specify amount to be handled or generatedtons/month <i>iv</i> . Describe any proposals for on-site minimization, recycling or reuse of hazardous constituents: <i>v</i> . Will any hazardous wastes be disposed at an existing offsite hazardous waste facility? If Yes: <i>v</i> . Will any hazardous wastes be disposed at an existing offsite hazardous waste facility? If Yes: <i>v</i> . Will any hazardous match of any hazardous wastes which will not be sent to a hazardous waste facility: <i>if</i> No: describe proposed Action E. Site and Setting of Proposed Action E. Land uses on and surrounding the project site <i>i</i> . Check all uses that occur on, adjoining and near the project site. I Urban I Urban I ndustrial I commercial I escidential (suburban) I Rural (non-farm)	If Yes: <i>i</i> Type of management or handling of waste proposed for the site (a.g., recycling or transfer station, composting	landfill or
 <i>ii.</i> Anticipated rate of disposal/processing: 		lanumi, or
 Tons/hour, if combustion or thermal treatment iii. If landfill, anticipated site life:years t. Will proposed action at the site involve the commercial generation, treatment, storage, or disposal of hazardous □ Yes □ No waste? If Yes: i. Name(s) of all hazardous wastes or constituents to be generated, handled or managed at facility:		
iii. If landfill, anticipated site life:years t. Will proposed action at the site involve the commercial generation, treatment, storage, or disposal of hazardous □ Yes □ No waste? If Yes: i. Name(s) of all hazardous wastes or constituents to be generated, handled or managed at facility:		
t. Will proposed action at the site involve the commercial generation, treatment, storage, or disposal of hazardous □ Yes □ No waste? If Yes: <i>i</i> . Name(s) of all hazardous wastes or constituents to be generated, handled or managed at facility:		
waste? If Yes: i. Name(s) of all hazardous wastes or constituents to be generated, handled or managed at facility: iii. Generally describe processes or activities involving hazardous wastes or constituents: iii. Generally describe processes or activities involving hazardous wastes or constituents: iii. Specify amount to be handled or generated tons/month iv. Describe any proposals for on-site minimization, recycling or reuse of hazardous constituents: v. Will any hazardous wastes be disposed at an existing offsite hazardous waste facility? v. Will any hazardous wastes be disposed at an existing offsite hazardous waste facility? If No: describe proposed management of any hazardous wastes which will not be sent to a hazardous waste facility: If No: describe proposed Management of any hazardous wastes which will not be sent to a hazardous waste facility: If No: describe proposed Action E.1 Land uses on and surrounding the project site a. Existing land uses. i. Check all uses that occur on, adjoining and near the project site. I: Urban □ Industrial □ Commercial □ Residential (suburban) □ Rural (non-farm)	iii. If landfill, anticipated site life: years	
 i. Name(s) of all hazardous wastes or constituents to be generated, handled or managed at facility:		\Box Yes \Box No
ii. Generally describe processes or activities involving hazardous wastes or constituents:		
 <i>ii.</i> Generally describe processes or activities involving hazardous wastes or constituents:	<i>i</i> . Name(s) of all hazardous wastes or constituents to be generated, handled or managed at facility:	
 <i>ii.</i> Generally describe processes or activities involving hazardous wastes or constituents:		
iv. Describe any proposals for on-site minimization, recycling or reuse of hazardous constituents:		
iv. Describe any proposals for on-site minimization, recycling or reuse of hazardous constituents:		
 v. Will any hazardous wastes be disposed at an existing offsite hazardous waste facility? Yes □ No If Yes: provide name and location of facility:		
If Yes: provide name and location of facility:	iv. Describe any proposals for on-site minimization, recycling or reuse of hazardous constituents:	
If Yes: provide name and location of facility:		
If No: describe proposed management of any hazardous wastes which will not be sent to a hazardous waste facility:	v. Will any hazardous wastes be disposed at an existing offsite hazardous waste facility?	\Box Yes \Box No
E. Site and Setting of Proposed Action E.1. Land uses on and surrounding the project site a. Existing land uses. i. Check all uses that occur on, adjoining and near the project site. □ Urban □ Industrial □ Commercial □ Residential (suburban) □ Rural (non-farm)	If Yes: provide name and location of facility:	
E. Site and Setting of Proposed Action E.1. Land uses on and surrounding the project site a. Existing land uses. i. Check all uses that occur on, adjoining and near the project site. □ Urban □ Industrial □ Commercial □ Residential (suburban) □ Rural (non-farm)		
E.1. Land uses on and surrounding the project site a. Existing land uses. i. Check all uses that occur on, adjoining and near the project site. □ Urban □ Industrial □ Commercial □ Residential (suburban) □ Rural (non-farm)	If No: describe proposed management of any hazardous wastes which will not be sent to a hazardous waste facility:	
E.1. Land uses on and surrounding the project site a. Existing land uses. i. Check all uses that occur on, adjoining and near the project site. □ Urban □ Industrial □ Commercial □ Residential (suburban) □ Rural (non-farm)		
E.1. Land uses on and surrounding the project site a. Existing land uses. i. Check all uses that occur on, adjoining and near the project site. □ Urban □ Industrial □ Commercial □ Residential (suburban) □ Rural (non-farm)		
a. Existing land uses. i. Check all uses that occur on, adjoining and near the project site. □ Urban □ Industrial □ Commercial □ Residential (suburban) □ Rural (non-farm)	E. Site and Setting of Proposed Action	
<i>i</i> . Check all uses that occur on, adjoining and near the project site. □ Urban □ Industrial □ Commercial □ Residential (suburban) □ Rural (non-farm)	E.1. Land uses on and surrounding the project site	
□ Urban □ Industrial □ Commercial □ Residential (suburban) □ Rural (non-farm)		
$\Box \Box$ Forest $\Box \Delta$ griculture $\Box \Delta$ quatic $\Box \Box$ () ther (specify):	□ Forest □ Agriculture □ Aquatic □ Other (specify):	

•

•

•

٠

•

•

• •

surfaces Forested

Agricultural

Other

Surface water features

Describe:

Land use or

Covertype

Meadows, grasslands or brushlands (non-

(lakes, ponds, streams, rivers, etc.) Wetlands (freshwater or tidal)

Non-vegetated (bare rock, earth or fill)

agricultural, including abandoned agricultural)

(includes active orchards, field, greenhouse etc.)

Roads, buildings, and other paved or impervious

b. Land uses and covertypes on the project site.

ii. If mix of uses, generally describe:

Current

Acreage

Acreage After

Project Completion

Change

(Acres +/-)

c. Is the project site presently used by members of the community for public recreation? <i>i.</i> If Yes: explain:	\Box Yes \Box No
 d. Are there any facilities serving children, the elderly, people with disabilities (e.g., schools, hospitals, licensed day care centers, or group homes) within 1500 feet of the project site? If Yes, 	□ Yes □ No
<i>i</i> . Identify Facilities:	
e. Does the project site contain an existing dam?	□ Yes □ No
If Yes:	
 <i>i.</i> Dimensions of the dam and impoundment: Dam height:	
Dam length: feet	
Surface area: acres	
Volume impounded: gallons OR acre-feet	
ii. Dam's existing hazard classification:	
<i>iii.</i> Provide date and summarize results of last inspection:	
f. Has the project site ever been used as a municipal, commercial or industrial solid waste management facility, or does the project site adjoin property which is now, or was at one time, used as a solid waste management facil If Yes:	□ Yes □ No ity?
<i>i</i> . Has the facility been formally closed?	\Box Yes \Box No
If yes, cite sources/documentation:	
<i>ii</i> . Describe the location of the project site relative to the boundaries of the solid waste management facility:	
<i>iii.</i> Describe any development constraints due to the prior solid waste activities:	
g. Have hazardous wastes been generated, treated and/or disposed of at the site, or does the project site adjoin property which is now or was at one time used to commercially treat, store and/or dispose of hazardous waste? If Yes:	□ Yes □ No
<i>i</i> . Describe waste(s) handled and waste management activities, including approximate time when activities occurre	ed:
 h. Potential contamination history. Has there been a reported spill at the proposed project site, or have any remedial actions been conducted at or adjacent to the proposed site? If Yes: 	□ Yes □ No
<i>i</i> . Is any portion of the site listed on the NYSDEC Spills Incidents database or Environmental Site Remediation database? Check all that apply:	\Box Yes \Box No
□ Yes – Spills Incidents database Provide DEC ID number(s):	
 Yes – Environmental Site Remediation database Neither database Provide DEC ID number(s):	
<i>ii</i> . If site has been subject of RCRA corrective activities, describe control measures:	
<i>iii.</i> Is the project within 2000 feet of any site in the NYSDEC Environmental Site Remediation database?	□ Yes □ No
If yes, provide DEC ID number(s):	
<i>iv.</i> If yes to (i), (ii) or (iii) above, describe current status of site(s):	

v. Is the project site subject to an institutional control limiting property uses?	\Box Yes \Box No
If yes, DEC site ID number:	
 Describe the type of institutional control (e.g., deed restriction or easement): Describe any use limitations: 	
Describe any engineering controls:	
• Will the project affect the institutional or engineering controls in place?	□ Yes □ No
• Explain:	
E.2. Natural Resources On or Near Project Site	
a. What is the average depth to bedrock on the project site? feet	
b. Are there bedrock outcroppings on the project site?	\Box Yes \Box No
If Yes, what proportion of the site is comprised of bedrock outcroppings?%	
c. Predominant soil type(s) present on project site:	
	%
	/0
d. What is the average depth to the water table on the project site? Average: feet	
e. Drainage status of project site soils: Well Drained: % of site	
 □ Moderately Well Drained:% of site □ Poorly Drained% of site 	
Image: Poorly Drained % of site f. Approximate proportion of proposed action site with slopes: Image: O-10%: % of site Image: Imag	
$\square 10-15\%: \qquad _\% \text{ of site}$	
\Box 15% or greater:% of site	
g. Are there any unique geologic features on the project site?	\Box Yes \Box No
If Yes, describe:	
h. Surface water features.	
<i>i</i> . Does any portion of the project site contain wetlands or other waterbodies (including streams, rivers, ponds or lakes)?	\Box Yes \Box No
<i>ii.</i> Do any wetlands or other waterbodies adjoin the project site?	□ Yes □ No
If Yes to either <i>i</i> or <i>ii</i> , continue. If No, skip to E.2.i.	
<i>iii.</i> Are any of the wetlands or waterbodies within or adjoining the project site regulated by any federal,	\Box Yes \Box No
state or local agency?	
 iv. For each identified regulated wetland and waterbody on the project site, provide the following information: Streams: Name Classification 	
• Lakes or Ponds: Name Classification	
Wetlands: Name Approximate Size	
• Wetland No. (if regulated by DEC)	□ Yes □ No
waterbodies?	
If yes, name of impaired water body/bodies and basis for listing as impaired:	
i. Is the project site in a designated Floodway?	\Box Yes \Box No
j. Is the project site in the 100 year Floodplain?	\Box Yes \Box No
k. Is the project site in the 500 year Floodplain?	\Box Yes \Box No
1. Is the project site located over, or immediately adjoining, a primary, principal or sole source aquifer?	\Box Yes \Box No
If Yes:	
<i>i</i> . Name of aquifer:	

m. Identify the predominant wildlife species that occupy or use the project site:	
n. Does the project site contain a designated significant natural community?	□ Yes □ No
If Yes: <i>i</i> . Describe the habitat/community (composition, function, and basis for designation):	
<i>ii.</i> Source(s) of description or evaluation:	
<i>iii.</i> Extent of community/habitat:	
Currently:acre	5
Following completion of project as proposed: acres	
• Gain or loss (indicate + or -):acres	
endangered or threatened, or does it contain any areas identified as habitat for an endan	gered or threatened species?
p. Does the project site contain any species of plant or animal that is listed by NYS as ran special concern?	e, or as a species of □ Yes □ No
q. Is the project site or adjoining area currently used for hunting, trapping, fishing or shell	
If yes, give a brief description of how the proposed action may affect that use:	
E.3. Designated Public Resources On or Near Project Site	
 a. Is the project site, or any portion of it, located in a designated agricultural district certif Agriculture and Markets Law, Article 25-AA, Section 303 and 304? If Yes, provide county plus district name/number: 	-
b. Are agricultural lands consisting of highly productive soils present?	\Box Yes \Box No
<i>i.</i> If Yes: acreage(s) on project site?	
<i>ii.</i> Source(s) of soil rating(s):	
 c. Does the project site contain all or part of, or is it substantially contiguous to, a registe Natural Landmark? If Yes: i. Nature of the natural landmark: ii. Biological Community iii. Geological Community 	al Feature
· · · · · · · · · · · · · · · · · · ·	
d. Is the project site located in or does it adjoin a state listed Critical Environmental Area If Yes: <i>i</i> . CEA name:	
<i>ii.</i> Basis for designation:	

 e. Does the project site contain, or is it substantially contiguous to, a building, archaeological site, or district which is listed on, or has been nominated by the NYS Board of Historic Preservation for inclusion on, the State or National Register of Historic Places? If Yes: i. Nature of historic/archaeological resource: □ Archaeological Site □ Historic Building or District 	□ Yes □ No
<i>ii</i> . Name:	
<i>iii</i> . Brief description of attributes on which listing is based:	
f. Is the project site, or any portion of it, located in or adjacent to an area designated as sensitive for archaeological sites on the NY State Historic Preservation Office (SHPO) archaeological site inventory?	□ Yes □ No
 g. Have additional archaeological or historic site(s) or resources been identified on the project site? If Yes: <i>i</i>. Describe possible resource(s): <i>ii</i>. Basis for identification: 	□ Yes □ No
 h. Is the project site within fives miles of any officially designated and publicly accessible federal, state, or local scenic or aesthetic resource? If Yes: i. Identify resource: 	□ Yes □ No
<i>ii.</i> Nature of, or basis for, designation (e.g., established highway overlook, state or local park, state historic trail or etc.):	scenic byway,
<i>iii</i> . Distance between project and resource: miles.	
 i. Is the project site located within a designated river corridor under the Wild, Scenic and Recreational Rivers Program 6 NYCRR 666? If Yes: i. Identify the name of the river and its designation: 	□ Yes □ No
<i>ii.</i> Is the activity consistent with development restrictions contained in 6NYCRR Part 666?	\Box Yes \Box No

F. Additional Information

Attach any additional information which may be needed to clarify your project.

If you have identified any adverse impacts which could be associated with your proposal, please describe those impacts plus any measures which you propose to avoid or minimize them.

G. Verification

I certify that the information provided is true to the best of my knowledge.

Applicant/Sponsor Name _____ Date_____

Signature_______ Title______

APPENDIX B

CORRESPONDENCE

Date	From	То	Topic
March 24, 2015	Cameron Engineering &	Water Authority of Great	Water Availability
	Associates, LLP	Neck North	
March 24, 2015	Cameron Engineering &	Great Neck Water Pollution	Sewer Availability
	Associates, LLP	Control District	
March 19, 2015	Cameron Engineering &	Nassau County Police	Police Availability
	Associates, LLP	Department, Third Precinct	
March 24, 2015	Nassau County Police	Cameron Engineering &	Police Availability
	Department, Third	Associates, LLP	
	Precinct		
March 19, 2015	Cameron Engineering &	Great Neck Alert Fire	Fire Response Availability
	Associates, LLP	Company	
March 20, 2015	Cameron Engineering &	Vigilant Fire Company	Ambulance Service
	Associates, LLP		Availability
March 24, 2015	Cameron Engineering &	Great Neck School District	School District Impacts
	Associates, LLP		_
April 1, 2015	Great Neck School	Cameron Engineering &	School District Impacts
•	District	Associates, LLP	-
December 10, 2015	Cameron Engineering &	Great Neck Alert Fire	Fire Response Availability
	Associates, LLP	Company	
December 10, 2015	Cameron Engineering &	Vigilant Fire Company	Ambulance Service
	Associates, LLP		Availability
June 24, 2016	Cameron Engineering &	Great Neck Alert Fire	Fire Response Availability
	Associates, LLP	Company	
June 24, 2016	Cameron Engineering &	Vigilant Fire Company	Ambulance Service
	Associates, LLP		Availability
June 29, 2016	Cameron Engineering &	Water Authority of Great	Water Availability
	Associates, LLP	Neck North	
July 25, 2017	Cameron Engineering &	Great Neck Alert Fire	Fire Response Availability
·	Associates, LLP	Company	
July 25, 2017	Cameron Engineering &	Vigilant Fire Company	Ambulance Service
	Associates, LLP		Availability
July 25, 2017	Cameron Engineering &	Water Authority of Great	Water Availability
	Associates, LLP	Neck North	-
July 25, 2017	Cameron Engineering &	Great Neck Water Pollution	Sewer Availability
-	Associates, LLP	Control District	-

100 Sunnyside Boulevard, Suite 100 Woodbury, NY 11797 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor

New York, NY 10018 White Plains, NY 10603 (914) 721-8300

(516) 827-4900 (212) 324-4000

March 24, 2015

Active Member of ACEC New York or Chief of Programming Const.

Managing Partner John D. Cameron, Jr., P.E.

Senior Partner Joseph R. Amato, P.E.

Partners / Principals Mark Wagner, CEP Janice Jijina, P.E., AICP CEP Nicholas A. Kumbatovic, P.E. Kevin M. McAndrew, R.L.A.

Senior Associates Glenn DeSimone, P.E., CPE Michael J. Hults, P.E. Robert E. Wilkinson, P.E.

Associates David L. Berg, AICP John E. Gursky Andrew L. Narus, P.E.

Chief Financial Officer Michael A. Neal, CPA

Gregory C. Graziano, Superintendent Water Authority of Great Neck North 50 Watermill Lane Great Neck, NY 11021

Millbrook Apartments (240-250 Middle Neck Road) - Request for Water Availability Re: Village of Great Neck, NY CE 2508

Dear Mr. Graziano:

This correspondence is forwarded requesting water availability from the Water Authority of Great Neck North for the above referenced residential development. Specifically, the project will involve the redevelopment of an existing 119-unit apartment complex located at 240-250 Middle Neck Road in the Village of Great Neck. The existing complex is proposed to be modified by removing 16 units and adding an additional 94 units (net gain of 78 residential units). Based upon preliminary design, the proposed project would include 79 one-bedroom units and 118 two-bedroom units for a total of 197 residential units (see attached Site Plan and Location Map).

As shown in the table below, the estimated average water demand generated by the existing uses is 29,600 gallons per day (gpd). The estimated future average water demand to be generated by the residential development is 51,200 gpd (see table below). This represents a net increase of 21,600 gpd above the existing apartment complex.

Existing	Quantity	gpd/unit	Gallons per day
1 br	61 units	200	12,200
2 br	58 units	300	17,400
		Total Existing	29,600
Proposed	Quantity	gpd/unit	Gallons per day
1 br	79 units	200	15,800
2 br	118 units	300	35,400
Total Proposed			51,200
		Net Increase	21,600

Calculations based on rates specified in the Nassau County Department of Public Works Sewage Flow Chart.

Gregory C. Graziano, Superintendent Millbrook Apartments – 240-250 Middle Neck Road March 24, 2015 Page 2 of 2

Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office.

Sincerely,

David & Tepp David J. Tepper

Planner

Enclosures: Site Plan Aerial/Location Map

K:\C2500-2549\CE2508 - Millbrook Apts\Community Service Letters\L 032415 to Great Neck Water Authority North.doc

100 Sunnyside Boulevard, Suite 100 Woodbury, NY 11797 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor White Plains, NY 10603 (914) 721-8300

New York, NY 10018

(516) 827-4900 (212) 324-4000

March 24, 2015

Active Member of ACEC New York

Managing Partner John D. Cameron, Jr., P.E.

Senior Partner Joseph R. Amato, P.E.

Partners / Principals Mark Wagner, CEP Janice Jijina, P.E., AICP CEP Nicholas A. Kumbatovic, P.E. Kevin M. McAndrew, R.L.A.

Senior Associates Glenn DeSimone, P.E., CPE Michael J. Hults, P.E. Robert E. Wilkinson, P.E.

Associates David L. Berg, AICP John E. Gursky Andrew L. Narus, P.E.

Chief Financial Officer Michael A. Neal, CPA

Christopher D. Murphy, Superintendent Great Neck Water Pollution Control District 236 East Shore Road Great Neck, NY 11023

Millbrook Apartments (240-250 Middle Neck Road) - Request for Sewer Availability Re: Village of Great Neck, NY CE 2508

Dear Mr. Murphy:

This correspondence is forwarded requesting sewer availability into the Great Neck Water Pollution Control District (GNWPCD) for the above referenced residential development. Specifically, the project will involve the redevelopment of an existing 119-unit apartment complex located at 240-250 Middle Neck Road in the Village of Great Neck. The existing complex is proposed to be modified by removing 16 units and adding an additional 94 units (net gain of 78 residential units). Based upon preliminary design, the proposed project would include 79 one-bedroom units and 118 two-bedroom units for a total of 197 residential units (see attached Site Plan and Location Map).

As shown in the table below, the estimated average sewage flow generated by the existing uses is 29,600 gallons per day (gpd). The estimated future average sewage flow to be generated by the residential development is approximately 51,200 gpd (see table below). This represents a net increase of 21,600 gpd above the existing apartment complex.

Existing	Quantity	gpd/unit	Gallons per day
1 br	61 units	200	12,200
2 br	58 units	300	17,400
		Total Existing	29,600
Proposed	Quantity	gpd/unit	Gallons per day
1 br	79 units	200	15,800
2 br	118 units	300	35,400
Total Proposed		51,200	
		Net Increase	21,600

Calculations based on rates specified in the Nassau County Department of Public Works Sewage Flow Chart.

Christopher D. Murphy, Superintendent Millbrook Apartments – 240-250 Middle Neck Road March 24, 2015 Page 2 of 2

Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office.

Very truly yours,

Daniel A Typ

David J. Tepper Planner

Enclosures:

Aerial/Location Map Site Plan

K:\C2500-2549\CE2508 - Millbrook Apts\Community Service Letters\L 032415 to GNWPCD.doc

100 Sunnyside Boulevard, Suite 100 Woodbury, NY 11797 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor White Plains, NY 10603 (914) 721-8300

New York, NY 10018

(516) 827-4900 (212) 324-4000

Active Member of ACEC New York towned Connell of Elignmenting Conferen

March 19, 2015

Commanding Officer Inspector Sean M. McCarthy Nassau County Police Department, Third Precinct 214 Hillside Avenue Williston Park, NY 11596

Re: Request for Resource Availability Redevelopment of Millbrook Apartments (240-250 Middle Neck Road) Village of Great Neck, NY CE 2508

Dear Inspector McCarthy:

Cameron Engineering & Associates, LLP is conducting a study of the potential impacts of the proposed redevelopment of an existing apartment complex (Millbrook Apartments) located at 240-250 Middle Neck Road in the Village of Great Neck. Specifically, the project will involve the redevelopment of an existing 119-unit apartment complex located at 240-250 Middle Neck Road in the Village of Great Neck. The existing complex is proposed to be modified by removing 16 units and adding an additional 94 units (net gain of 78 residential units). Upon completion, the proposed project would include a total of 197 residential units.

Please advise regarding your department's ability to properly serve the proposed redevelopment of the site.

A proposed site plan and location map are attached for your reference. Please provide us with the requested information at your earliest possible convenience.

Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office. Thank you for your assistance with this matter.

Sincerely,

David J. Tepper Planner

Enclosures: Site Plan Aerial Location Map

K:\C2500-2549\CE2508 - Millbrook Apts\Community Service Letters\L 031915 to NCPD.doc

Managing Partner John D. Cameron, Jr., P.E.

Senior Partner Joseph R. Amato, P.E.

Partners / Principals Mark Wagner, CEP Janice Jijina, P.E., AICP CEP Nicholas A. Kumbatovic, P.E. Kevin M. McAndrew, R.L.A.

Senior Associates Glenn DeSimone, P.E., CPE Michael J. Hults, P.E. Robert E. Wilkinson, P.E.

Associates David L. Berg, AICP John E. Gursky Andrew L. Narus, P.E.

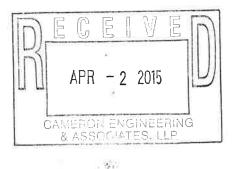
Chief Financial Officer Michael A. Neal, CPA

Nassau County

EDWARD P. MANGANO COUNTY EXECUTIVE

1490 Franklin Avenue Mineola, New York 11501 (516) 573-8800

Police Department


THOMAS C. KRUMPTER ACTING COMMISSIONER

Third Precinct 214 Hillside Ave Williston Park, NY 11596

March 24, 2015

David J. Tepper Cameron Engineering & Associates, LLP 100 Sunnyside Boulevard Woodbury, N.Y. 11797

RE: Request for Resource Availability Redevelopment of Millbrook Apartments 240-250 Middle Neck Road, Great Neck CE 2508

Dear Mr. Tepper,

This is in response to your Request for Resource Availability ¹regarding a proposed redevelopment and addition of (78) new residential units at the Millbrook Apartments complex located at 240-250 Middle Neck Road, Great Neck. The following are responses as it relates to the Nassau County Police Department and the services that we provide:

- 1. The subject property is within the jurisdiction of the Third Precinct.
- 2. The nearest police station to the site would be the Third Precinct Policing Center, Nassau County Police Department, located at 100 Community Dr., Manhasset N.Y. 11030.
- 3. Police protection will continue to be provided at the same level of service as it is presently. The increase in additional residents within this area will obviously result in a greater number of calls for service from our department. It will not, however, adversely affect our abilities to promptly respond and provide all necessary services to this apartment complex.

If you require any additional information in regards to your Request for Resource Availability, or the abilities of the Nassau County Police Department to provide required services, please feel free to contact me at 516-573-6348.

Sincerely, Robert Johnston Administrative Sergeant

100 Sunnyside Boulevard, Suite 100 Woodbury, NY 11797 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor

New York, NY 10018 White Plains, NY 10603 (914) 721-8300

(516) 827-4900 (212) 324-4000

Active Member of ACEC New York

March 19, 2015

Chief Raymond Plakstis Alert Engine, Hook, Ladder and Hose Co., No. 1, Inc. 555 Middle Neck Road Great Neck, New York 11023

Re: Request for Resource Availability Redevelopment of Millbrook Apartments (240-250 Middle Neck Road) Village of Great Neck, NY CE 2508

Dear Chief Plakstis:

Cameron Engineering & Associates, LLP is conducting a study of the potential impacts of the proposed redevelopment of an existing apartment complex (Millbrook Apartments) located at 240-250 Middle Neck Road in the Village of Great Neck. Specifically, the project will involve the redevelopment of an existing 119-unit apartment complex located at 240-250 Middle Neck Road in the Village of Great Neck. The existing complex is proposed to be modified by removing 16 units and adding an additional 94 units (net gain of 78 residential units). Upon completion, the proposed project would include a total of 197 residential units.

Please advise regarding your department's ability to properly serve the proposed redevelopment of the site.

A proposed site plan and location map are attached for your reference. Please provide us with the requested information at your earliest possible convenience.

Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office. Thank you for your assistance with this matter.

Sincerely. Deniel

David J. Tepper Planner

Enclosures:

Site Plan Aerial Location Map

K:\C2500-2549\CE2508 - Millbrook Apts\Community Service Letters\L 031915 to Alert Fire Co.doc

Managing Partner John D. Cameron, Jr., P.E.

Senior Partner Joseph R. Amato, P.E.

Partners / Principals Mark Wagner, CEP Janice Jijina, P.E., AICP CEP Nicholas A. Kumbatovic, P.E. Kevin M. McAndrew, R.L.A.

Senior Associates Glenn DeSimone, P.E., CPE Michael J. Hults, P.E. Robert E. Wilkinson, P.E.

Associates David L. Berg, AICP John E. Gursky Andrew L. Narus, P.E.

Chief Financial Officer Michael A. Neal, CPA

100 Sunnyside Boulevard, Suite 100 Woodbury, NY 11797 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor White Plains, NY 10603 (914) 721-8300

New York, NY 10018

(516) 827-4900 (212) 324-4000

Active Member of ACEC New York

mericar Connell of Engineering Company

March 20, 2015

Chief Laurence Jacobs Vigilant Engine and Hook & Ladder Co., Inc. 83 Cutter Mill Road Great Neck, NY 11021

Re: Request for Resource Availability Redevelopment of Millbrook Apartments (240-250 Middle Neck Road) Village of Great Neck, NY CE 2508

Dear Inspector McCarthy:

Cameron Engineering & Associates, LLP is conducting a study of the potential impacts of the proposed redevelopment of an existing apartment complex (Millbrook Apartments) located at 240-250 Middle Neck Road in the Village of Great Neck. Specifically, the project will involve the redevelopment of an existing 119-unit apartment complex located at 240-250 Middle Neck Road in the Village of Great Neck. The existing complex is proposed to be modified by removing 16 units and adding an additional 94 units (net gain of 78 residential units). Upon completion, the proposed project would include a total of 197 residential units.

Please advise regarding your department's ability to provide ambulance service for the proposed redevelopment of the site.

A proposed site plan and location map are attached for your reference. Please provide us with the requested information at your earliest possible convenience.

Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office. Thank you for your assistance with this matter.

Sincerely,

David J. Tepper Planner

Enclosures: Site Plan Aerial Location Map

K:\C2500-2549\CE2508 - Millbrook Apts\Community Service Letters\L 032015 to Vigilant.doc

Managing Partner John D. Cameron, Jr., P.E.

> Senior Partner Joseph R. Amato, P.E.

Partners / Principals Mark Wagner, CEP Janice Jijina, P.E., AICP CEP Nicholas A. Kumbatovic, P.E. Kevin M. McAndrew, R.L.A.

Senior Associates Glenn DeSimone, P.E., CPE Michael I. Hults, P.E. Robert E. Wilkinson, P.E.

Associates David L. Berg, AICP John E. Gursky Andrew L. Narus, P.E.

Chief Financial Officer Michael A. Neal, CPA

100 Sunnyside Boulevard, Suite 100 Woodbury, NY 11797 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor

New York, NY 10018 White Plains, NY 10603 (914) 721-8300

(516) 827-4900 (212) 324-4000

Active Member of ACEC New York

Anna in Consul Strangerman Company

March 24, 2015

Dr. Thomas P. Dolan, Superintendent Great Neck School District 345 Lakeville Road Great Neck, NY 11020

Re: Request for Resource Availability Redevelopment of Millbrook Apartments (240-250 Middle Neck Road) Village of Great Neck, NY **CE 2508**

Dear Dr. Dolan:

Cameron Engineering & Associates, LLP is conducting a study of the potential impacts of the proposed redevelopment of an existing apartment complex (Millbrook Apartments) located at 240-250 Middle Neck Road in the Village of Great Neck. Specifically, the project will involve the redevelopment of an existing 119-unit apartment complex located at 240-250 Middle Neck Road in the Village of Great Neck. The existing complex is proposed to be modified by removing 16 units and adding an additional 94 units (net gain of 78 residential units). Based up preliminary design, the proposed project would include 79 one-bedroom units and 118 two-bedroom units for a total of 197 residential units (see attached Site Plan and Location Map). The proposed apartment building is located within the Great Neck School District.

Based on the Residential Demographic Multipliers for New York, issued by Rutgers University, Center for Urban Policy Research, the proposed project could become home to approximately 24 public schoolage children, i.e., 7.48 for grades K-2, 7.48 for grades 3-6, 5.51 for grades 7-9 and 4.33 for grades 10-12. Based upon the same Residential Demographic Multipliers, the existing apartment complex could be home to an estimated 14 public school-age children. This represents a net increase of approximately 10 public school-age children. Please advise regarding your district's ability to accommodate the students from the proposed apartment building.

Please provide us with the requested information at your earliest possible convenience. Should you have any questions or require additional information, please feel free to contact me at (516) 224-5224. Thank you for your assistance with this matter.

Sincerely, David J. Tepper

Planner

Enclosures: Site Plan Aerial Location Map

Managing Partner John D. Cameron, Jr., P.E.

Senior Partner Joseph R. Amato, P.E.

Partners / Principals Mark Wagner, CEP Janice Jijina, P.E., AICP CEP Nicholas A. Kumbatovic, P.E. Kevin M. McAndrew, R.L.A.

Senior Associates Glenn DeSimone, P.E., CPE Michael J. Hults, P.E. Robert E. Wilkinson, P.E.

Associates David L. Berg, AICP John E. Gursky Andrew L. Narus, P.E.

Chief Financial Officer Michael A. Neal, CPA

GREAT NECK PUBLIC SCHOOLS 345 Lakeville Road Great Neck, New York 11020 Telephone (516) 441-4020 Fax (516) 441-4922

John T. Powell Assistant Superintendent for Business

Mr. David J. Tepper Cameron Engineering & Associates, LLP 100 Sunnyside Blvd, Ste 100 Woodbury, NY 11797

Re: Request for Resource Availability Redevelopment of Millbrook Apartments (240-250 Middle Neck Road) Village of Great Neck, NY CE 2508

Dear Mr. Tepper:

In an answer to your letter of March 24, 2015 requesting the Great Neck Public School District's availability to accommodate the possibility of an additional 10 new students (spread out among grades Kindergarten through 12th grade) from the redevelopment of the Millbrook Apartments, the answer is yes, the District has the availability.

If you have any additional questions please feel free to contact my office.

Sincerely, M

John T. Powell Assistant Superintendent

JTP/md

CameronEngineeringApril115

100 Sunnyside Boulevard, Suite 100 Woodbury, NY 11797 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor White Plains, NY 10603 (914) 721-8300

New York, NY 10018

(516) 827-4900 (212) 324-4000

Active Member of ACEC New York

or Connell of Imprecising Companie

December 10, 2015

Chief James E. Neubert Alert Engine, Hook, Ladder and Hose Co., No. 1, Inc. 555 Middle Neck Road Great Neck, New York 11023

Request for Resource Availability Re: Redevelopment of Millbrook Apartments (240-250 Middle Neck Road) Village of Great Neck, NY **CE 2508**

Dear Chief Neubert:

Cameron Engineering & Associates, LLP is conducting a study of the potential impacts of the proposed redevelopment of an existing apartment complex (Millbrook Apartments) located at 240-250 Middle Neck Road in the Village of Great Neck. We previously sent a letter on March 19, 2015 regarding this project – please note that the project has been revised slightly since then. Specifically, the project will involve the redevelopment of an existing 119-unit apartment complex. The existing complex is proposed to be modified by removing 18 units and adding an additional 101 units (net gain of 83 residential units). Upon completion, the proposed project would include a total of 202 residential units and 326 parking spaces.

Please advise regarding your department's ability to provide fire service for the proposed redevelopment of the site.

A proposed site plan, construction logistics plan and location map are attached for your reference. Please provide us with the requested information at your earliest possible convenience. Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office. Thank you for your assistance with this matter.

Sincerely.

David J. Tepper

Planner

Enclosures:

Site Plan **Construction Logistics Plan Aerial Location Map**

K:\C2500-2549\CE2508 - Millbrook Apts\Community Service Letters\L 121015 to Alert Fire Co.doc

"Celebrating 30 Years of Excellence in Planning and Engineering" www.cameronengineering.com

Managing Partner

John D. Cameron, Jr., P.E.

Senior Partner Joseph R. Amato, P E.

Partners / Principals

Mark Wagner, CEP Janice Jijina, P.E., AICP CEP Nicholas A. Kumbatovic, P.E. Kevin M. McAndrew, R.L.A.

Senior Associates Glenn DeSimone, P.E., CPE Michael J. Hults, P.E.

Associates

John E. Gursky Andrew L. Narus, P.E. Michael A. De Giglio, R.L.A.

Chief Financial Officer Michael A. Neal, CPA

100 Sunnyside Boulevard, Suite 100 Woodbury, NY 11797 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor White Plains, NY 10603 (914) 721-8300

New York, NY 10018

(516) 827-4900 (212) 324-4000

Active Member of

ACEC New York Connal of Engineering Comp

December 10, 2015

Chief Joshua Forst Vigilant Engine and Hook & Ladder Co., Inc. 83 Cutter Mill Road Great Neck, NY 11021

Re: **Request for Resource Availability** Redevelopment of Millbrook Apartments (240-250 Middle Neck Road) Village of Great Neck, NY **CE 2508**

Dear Chief Forst:

Cameron Engineering & Associates, LLP is conducting a study of the potential impacts of the proposed redevelopment of an existing apartment complex (Millbrook Apartments) located at 240-250 Middle Neck Road in the Village of Great Neck. We previously sent a letter on March 20, 2015 regarding this project - please note that the project has been revised slightly since then. Specifically, the project will involve the redevelopment of an existing 119-unit apartment complex. The existing complex is proposed to be modified by removing 18 units and adding an additional 101 units (net gain of 83 residential units). Upon completion, the proposed project would include a total of 202 residential units and 326 parking spaces.

Please advise regarding your department's ability to provide ambulance service for the proposed redevelopment of the site.

A proposed site plan, construction logistics plan and location map are attached for your reference. Please provide us with the requested information at your earliest possible convenience.

Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office. Thank you for your assistance with this matter.

Sincerely. David J. Tepper

Planner

Enclosures: Site Plan **Construction Logistics Plan** Aerial Location Map

K:\C2500-2549\CE2508 - Millbrook Apts\Community Service Letters\L 121015 to Vigilant.doc

"Celebrating 30 Years of Excellence in Planning and Engineering"

www.cameronengineering.com

Managing Partner

John D. Cameron, Jr., P.E.

Senior Partner Joseph R. Amato, P.E.

Partners / Principals

Mark Wagner, CEP Janice Jijina, P.E., AICP CEP Nicholas A. Kumbatovic, P.E. Kevin M. McAndrew, R.L.A.

Senior Associates

Glenn DeSimone, P.E., CPE Michael J. Hults, P.E.

Associates

John E. Gursky Andrew L. Narus, P.E. Michael A. De Giglio, R.L.A.

Chief Financial Officer Michael A. Neal, CPA

100 Sunnyside Boulevard, Suite 100 Woodbury, NY 11797 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor

New York, NY 10018 White Plains, NY 10603 (914) 721-8300

(516) 827-4900 (212) 324-4000

Active Member of ACEC New York

June 24, 2016

Managing Partner John D. Cameron, Jr., P.E.

Senior Partner Joseph R. Amato, P.F.

Partners / Principals

Mark Wagner, CEP Jamce Juma, P.E., AICP CEP Nicholas A. Kumbalovic, P.E. Kevin M. Mc Andrew, R.L.A.

Senior Associates

Glenn DeSimone, P.E., CPE Michael J. Hutts, P.E.

Associates

John E. Gursky Andrew L. Narus, P.E. Michael A. De Giglio, R.L.A.

Chief James E. Neubert Alert Engine, Hook, Ladder and Hose Co., No. 1, Inc. 555 Middle Neck Road Great Neck, New York 11023

Re: Request for Resource Availability Redevelopment of Millbrook Apartments (240-250 Middle Neck Road) Village of Great Neck, NY CE 2508

Dear Chief Neubert:

Cameron Engineering & Associates, LLP is conducting a study of the potential impacts of the proposed redevelopment of an existing apartment complex (Millbrook Apartments) located at 240-250 Middle Neck Road in the Village of Great Neck. We previously sent letters on March 19, 2015 and December 10, 2015 regarding this project. The project will involve the redevelopment of an existing 119-unit apartment complex. The existing complex is proposed to be modified by removing 18 units and adding an additional 101 units (net gain of 83 residential units). Upon completion, the proposed project would include a total of 202 residential units and 326 parking spaces.

In addition to submitting written requests for service availability, Mr. Andrew DeMartin has met with Alert Engine, Hook, Ladder and Hose Co., No. 1, Inc. to discuss any potential concerns about the proposed redevelopment. Based on these conversations, the proposed project has been modified and mitigation measures have been developed to ensure adequate fire service protection. Specifically, balconies have been removed from multiple buildings/access routes to ensure that a 49' fire truck could service the site. In addition, after reviewing the project phasing plan with the department, it was determined that on-site security will be provided during the construction phases to ensure fire safety and protection.

Please advise regarding your department's ability to provide fire service for the proposed redevelopment of the site. Previous letters, including a proposed site plan, fire truck access path plan, construction logistics plan, and location map are attached for your reference. Please provide us with the requested information at your earliest possible convenience. Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office. Thank you for your assistance with this matter.

Sincerely, lepp David J. Tepper

Planner

CC: Andrew DeMartin

Enclosures: Site Plan Fire Truck Access Path Plan Construction Logistics Plan Aerial Location Map Previous Letters

K:\C2500-2549\CE2508 - Millbrook Apts\Community Service Letters\L 062416 to Alert Fire Co.doc

100 Sunnyside Boulevard, Suite 100 Woodbury, NY 11797 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor

Active Member of

New York, NY 10018 White Plains, NY 10603 (914) 721-8300

(516) 827-4900 (212) 324-4000

ACEC New York

June 24, 2016

Managing Partner John D. Cameron, Ir., P.E.

Senior Partner

Ioseph R. Amate, P.E.

Partners / Principals Mark Wagner, CEP Janice Jijina, P.E., AICP CEP

Nacholas A. Kumbatovic, P.E. Kevin M. McAndrew, R.L.A.

Senior Associates Glenn DeSimone, P.E., CPF. Michael J. Hults, P.E.

Associates

John E. Gursky Andrew L. Narus, P.E. Michael A. De Giglio, R.L.A.

Chief Joshua Forst Vigilant Engine and Hook & Ladder Co., Inc. 83 Cutter Mill Road Great Neck, NY 11021

Re: Request for Resource Availability Redevelopment of Millbrook Apartments (240-250 Middle Neck Road) Village of Great Neck, NY CE 2508

Dear Chief Forst:

Cameron Engineering & Associates, LLP is conducting a study of the potential impacts of the proposed redevelopment of an existing apartment complex (Millbrook Apartments) located at 240-250 Middle Neck Road in the Village of Great Neck. We previously sent letters on March 19, 2015 and December 10, 2015 regarding this project. The project will involve the redevelopment of an existing 119-unit apartment complex. The existing complex is proposed to be modified by removing 18 units and adding an additional 101 units (net gain of 83 residential units). Upon completion, the proposed project would include a total of 202 residential units and 326 parking spaces.

In addition to submitting written requests for service availability, Mr. Andrew DeMartin has met with Vigilant Engine and Hook & Ladder Co., Inc. to discuss any potential concerns about the proposed redevelopment. Based on these conversations, the proposed project has been modified and mitigation measures have been developed to ensure adequate emergency services. Specifically, balconies have been removed from multiple buildings/access routes to ensure that a 49' fire truck could service the site. In addition, after reviewing the project phasing plan with the department, it was determined that on-site security will be provided during the construction phases to ensure adequate service and protection.

Please advise regarding your department's ability to provide ambulance service for the proposed redevelopment of the site.

Previous letters, including a proposed site plan, fire truck access path plan, construction logistics plan, and location map are attached for your reference. Please provide us with the requested information at your earliest possible convenience. Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office. Thank you for your assistance with this matter.

Sincerely David J. Tepper

Planner

CC: Andrew DeMartin

Enclosures: Site Plan Fire Truck Access Path Plan Construction Logistics Plan Aerial Location Map Previous Letters

K:\C2500-2549\CE2508 - Millbrook Apts\Community Service Letters\L 121015 to Vigilant.doc

100 Sunnyside Boulevard, Suite 100 Woodbury, NY 11797 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor

New York, NY 10018 White Plains, NY 10603 (914) 721-8300

(516) 827-4900 (212) 324-4000

Active Member of

ACEC New York

Managing Partner John D. Cameron, Jr., P.E.

Senior Partner Joseph R. Amato, P.E.

Partners / Principals Mark Wagner, CEP Janice Jipna, P.E., AICP CEP Nicholas A. Kumbaiovic, P.E. Kevin M. McAndrew, R.L.A.

Senior Associates Glenn DeSimone, P.E., CPE Michael F. Hulls, P.E.

Associates

John E. Gursky Andrew L. Narus, P.E. Michael A. De Ciglio, R.L.A.

June 29, 2016

Gregory C. Graziano, Superintendent Water Authority of Great Neck North 50 Watermill Lane Great Neck, NY 11021

Millbrook Apartments (244 Middle Neck Road) - Request for Water Availability Re: Village of Great Neck, NY CE 2508

Dear Mr. Graziano:

This correspondence is forwarded requesting water availability from the Water Authority of Great Neck North for the above referenced residential development. Specifically, the project will involve the redevelopment of an existing 119-unit apartment complex located at 244 Middle Neck Road in the Village of Great Neck (Section: 2 Block: 354 Lot: 138). We previously sent a letter requesting water availability on March 24, 2015. The project will involve the redevelopment of an existing 119unit apartment complex. The existing complex is proposed to be modified by removing 18 units and adding an additional 101 units (net gain of 83 residential units). Upon completion, the proposed project would include a total of 202 residential units and 326 parking spaces

As shown in the table below, the estimated average water demand generated by the existing uses is 27,900 gallons per day (gpd). The estimated future average water demand to be generated by the residential development is 47,600 gpd (see table below). This represents a net increase of 19,700 gpd above the existing apartment complex. The proposed service will utilize a minimum pipe size of four inches (4") for domestic service and a pipe size of six inches (6") for fire service.

Existing	Quantity	Rate (gpd/unit)	Gallons per day
1 br/studio	78 units	200	15,600
2 br	41 units	300	12,300
		Total Existing	27,900
Proposed	Quantity	Rate (gpd/unit)	Gallons per day
1 br	106 units	200	21,200
2 br	88 units	300	26,400
3 br	8 units	400	3,200
		Total Proposed	47,600
		Estimated Net Increase	19,700

Calculations based on rates specified in the Nassau County Department of Public Works Sewage Flow Chart.

Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office.

Sincerely,

David J. Tepper

Planner

Enclosures: Site Plan (Five Copies) Aerial/Location Map

K:\C2500-2549\CE2508 - Millbrook Apts\Community Service Letters\L 062916 to Great Neck Water Authority North.doc

177 Crossways Park Drive 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor White Plains, NY 10603 (914) 721-8300

Woodbury, NY 11797 New York, NY 10018

burn or Council di Contraty Contraty

(516) 827-4900 (212) 324-4000

Active Member of ACEC New York

July 25, 2017

Managing Partner John D. Cameron, Jr., P.E.

Senior Partner Joseph R. Amato, P.E.

Partners / Principals Mark Wagner, CEP Janice Jijina, P.E., AICP CEP Nicholas A. Kumbatovic, P.E. Kevin M. McAndrew, R.L.A.

Associate Partner Michael J. Hults, P.E.

Senior Associate Glenn DeSimone, P.E., CPE

Associates John E. Gursky Andrew L. Narus, P.E. Michael A. De Giglio, R.L.A.

Chief James E. Neubert Alert Engine, Hook, Ladder and Hose Co., No. 1, Inc. 555 Middle Neck Road Great Neck, New York 11023

Re: **Request for Resource Availability** Redevelopment of Millbrook Apartments (240-250 Middle Neck Road) Village of Great Neck, NY CE 2508

Dear Chief Neubert:

Cameron Engineering & Associates, LLP is conducting a study of the potential impacts of the proposed redevelopment of an existing apartment complex (Millbrook Apartments) located at 240-250 Middle Neck Road in the Village of Great Neck. We previously sent letters on March 19, 2015, December 10, 2015 and June 24, 2016 regarding this project. However, please note that since the last letter was sent, the project has been revised to reduce overall density - with fewer units and on-site parking spaces compared to previous plans.

The project will involve the redevelopment of an existing 119-unit apartment complex. The existing complex is proposed to be modified by removing 33 units and adding an additional 100 units (net gain of 67 residential units). Upon completion, the proposed project would include a total of 186 residential units and 302 parking spaces. A project location map, proposed site plan and fire truck access path plan are attached for your reference.

Please advise regarding your department's ability to provide fire service for the proposed redevelopment of the site at your earliest possible convenience. Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office. Thank you for your assistance with this matter.

Sincerely,

David J. Tepper, AICF Planner

CC: Paul J. Bloom, Harras Bloom & Archer, LLP

Enclosures: Project Location Map Site Plan Fire Truck Access Path Plan

177 Crossways Park Drive 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor White Plains, NY 10603 (914) 721-8300

Active Member of

Woodbury, NY 11797 New York, NY 10018

ACEC New York

(516) 827-4900 (212) 324-4000

July 25, 2017

Managing Partner John D. Cameron, Jr., P.E.

Senior Partner Joseph R. Amato, P.E.

Partners / Principals Mark Wagner, CEP Janice Jijina, P.E., AICP CEP Nicholas A. Kumbatovic, P.E. Kevin M. McAndrew, R.L.A.

Associate Partner Michael J. Hults, P.E.

Senior Associate Glenn DeSimone, P.E., CPE

Associates John E. Gursky Andrew L. Narus, P.E. Michael A. De Giglio, R.L.A.

Chief Joshua Forst Vigilant Engine and Hook & Ladder Co., Inc. 83 Cutter Mill Road Great Neck, NY 11021

Re: **Request for Resource Availability** Redevelopment of Millbrook Apartments (240-250 Middle Neck Road) Village of Great Neck, NY CE 2508

Dear Chief Forst:

Cameron Engineering & Associates, LLP is conducting a study of the potential impacts of the proposed redevelopment of an existing apartment complex (Millbrook Apartments) located at 240-250 Middle Neck Road in the Village of Great Neck. We previously sent letters on March 19, 2015, December 10, 2015 and June 24, 2016 regarding this project. However, please note that since the last letter was sent, the project has been revised to reduce overall density - with fewer units and on-site parking spaces compared to previous plans.

The project will involve the redevelopment of an existing 119-unit apartment complex. The existing complex is proposed to be modified by removing 33 units and adding an additional 100 units (net gain of 67 residential units). Upon completion, the proposed project would include a total of 186 residential units and 302 parking spaces. A project location map, proposed site plan and fire truck access path plan are attached for your reference.

Please advise regarding your department's ability to provide ambulance service for the proposed redevelopment of the site at your earliest possible convenience. Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office. Thank you for your assistance with this matter.

Sincerely,

David J. Tepper, AICP Planner

CC: Paul J. Bloom, Harras Bloom & Archer, LLP

Enclosures: Project Location Map Site Plan Fire Truck Access Path Plan

177 Crossways Park Drive 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor

Active Member of ACEC New York

(516) 827-4900 Woodbury, NY 11797 (212) 324-4000 New York, NY 10018 White Plains, NY 10603 (914) 721-8300

and or Care if the analysis Court

Managing Partner John D. Cameron, Jr., P.E.

Senior Partner Joseph R. Amato, P.E.

Partners / Principals Mark Wagner, CEP Janice Jijina, P.E., AICP CEP Nicholas A. Kumbatovic, P.E. Kevin M. McAndrew, R.L.A.

Associate Partner Michael J. Hults, P.E.

Senior Associate Glenn DeSimone, P.E., CPE

Associates John E. Gursky Andrew L. Narus, P.E. Michael A. De Giglio, R.L.A.

Gregory C. Graziano, Superintendent Water Authority of Great Neck North 50 Watermill Lane Great Neck, NY 11021

Millbrook Apartments (240-250 Middle Neck Road) - Request for Water Availability Re: Village of Great Neck, NY CE 2508

Dear Mr. Graziano:

This correspondence is the third request for water availability from the Water Authority of Great Neck North for the above referenced residential development. Specifically, the project will involve the redevelopment of an existing 119-unit apartment complex located at 240-250 Middle Neck Road in the Village of Great Neck (Section: 2 Block: 354 Lot: 138).

We previously sent letters requesting water availability on March 24, 2015 and June 29, 2016 with no response. Since the last letter was sent, the overall density of the project has been reduced to include fewer residential units and fewer on-site parking spaces. The existing complex is proposed to be modified by removing 33 units and adding an additional 100 units (net gain of 67 residential units). Upon completion, the proposed project would include a total of 186 residential units and 302 parking spaces. A project location map and five copies of the proposed site plan are attached for your reference.

As shown in the table below, the estimated average water demand generated by the existing uses is 27,900 gallons per day (gpd). The estimated future average water demand to be generated by the residential development is 45,000 gpd (see table below). This represents a net increase of 17,100 gpd above the existing apartment complex. The proposed service will utilize a minimum pipe size of four inches (4") for domestic service and a pipe size of six inches (6") for fire service.

> "Celebrating Over 30 Years of Excellence in Planning and Engineering" www.cameronengineering.com

July 25, 2017

Existing	Quantity	Rate (gpd/unit)	Gallons per day
1 br/studio	78 units	200	15,600
2 br	41 units	300	12,300
		Total Existing	27,900
Proposed	Quantity	Rate (gpd/unit)	Gallons per day
1 br	112 units	200	22,400
2 br	70 units	300	21,000
3 br	4 units	400	1,600
Total Proposed		45,000	
		Estimated Net Increase	17,100

Calculations based on rates specified in the Nassau County Department of Public Works Sewage Flow Chart.

Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office.

Sincerely,

Doniel & Tegym

David J. Tepper, AICP Planner

CC: Paul J. Bloom, Harras Bloom & Archer, LLP

Enclosures: Site Plan (Five Copies) Aerial/Location Map

K:\C2500-2549\CE2508 - Millbrook Apts\Community Service Letters\L 072517 to Great Neck Water Authority North.doc

177 Crossways Park Drive 45 West 36th Street, Third Floor 303 Old Tarrytown Road, 1st Floor

Woodbury, NY 11797 New York, NY 10018 White Plains, NY 10603 (914) 721-8300

Active Member of ACEC New York bus for Canal II generally Confer

Managing Partner John D. Cameron, Jr., P.E.

Senior Partner Joseph R. Amato, P.E.

Partners / Principals Mark Wagner, CEP Janice Jijina, P.E., AICP CEP Nicholas A. Kumbatovic, P.E. Kevin M. McAndrew, R.L.A.

Associate Partner Michael J. Hults, P.E.

Senior Associate Glenn DeSimone, P.E., CPE

Associates John E. Gursky Andrew L. Narus, P.E. Michael A. De Giglio, R.L.A.

July 25, 2017

(516) 827-4900

(212) 324-4000

Christopher D. Murphy, Superintendent Great Neck Water Pollution Control District 236 East Shore Road Great Neck, NY 11023

Millbrook Apartments (240-250 Middle Neck Road) - Request for Sewer Availability Re: Village of Great Neck, NY **CE 2508**

Dear Mr. Murphy:

This correspondence is the second request for sewer availability into the Great Neck Water Pollution Control District (GNWPCD) for the above referenced residential development. Specifically, the project will involve the redevelopment of an existing 119-unit apartment complex located at 240-250 Middle Neck Road in the Village of Great Neck (Section: 2 Block: 354 Lot: 138).

We previously sent a letter requesting sewer availability on March 24, 2015 with no response. Since the last letter was sent, the overall density of the project has been reduced to include fewer residential units and fewer on-site parking spaces. The existing complex is proposed to be modified by removing 33 units and adding an additional 100 units (net gain of 67 residential units). Upon completion, the proposed project would include a total of 186 residential units and 302 parking spaces. A project location map and a copy of the proposed site plan are attached for your reference

As shown in the table below, the estimated average sewage flow generated by the existing uses is 27,900 gallons per day (gpd). The estimated future average sewage flow to be generated by the residential development is approximately 45,000 gpd (see table below). This represents a net increase of 17,100 gpd above the existing apartment complex.

Christopher D. Murphy, Superintendent Millbrook Apartments – 240-250 Middle Neck Road July 25, 2017 Page 2 of 2

Existing	Quantity	gpd/unit	Gallons per day
1 br	78 units	200	15,600
2 br	41 units	300	12,300
		Total Existing	27,900
Proposed	Quantity	gpd/unit	Gallons per day
1 br	112 units	200	22,400
2 br	70 units	300	21,000
3 br	4 units	400	1,600
		Total Proposed	45,000
Net Increase			17,100

Calculations based on rates specified in the Nassau County Department of Public Works Sewage Flow Chart.

Should you have any questions or require additional information in order to provide a letter of availability, please feel free to contact our office.

Very truly yours,

David J. Tepper, AICP Planner

CC: Paul J. Bloom, Harras Bloom & Archer, LLP

Enclosures:

Aerial/Location Map Site Plan

K:\C2500-2549\CE2508 - Millbrook Apts\Community Service Letters\L 072517 to GNWPCD.doc

APPENDIX C

TRAFFIC STUDY

TRAFFIC ENGINEERING REPORT

THE MILLBROOK APARTMENT COMPLEX MIDDLE NECK ROAD

VILLAGE OF GREAT NECK

TOWN OF NORTH HEMPSTEAD NASSAU COUNTY

> PROJECT NO. M15-012 MARCH 2018

1225 FRANKLIN AVENUE, SUITE 325 – GARDEN CITY, NEW YORK 11530 Tel: (516) 616-0083 - FAX (516) 616-0086 WWW.MULRYANENG.COM

TABLE OF CONTENTS

TABLE OF CONTENTS	i
TECHNICAL APPENDIX TABLE OF CONTENTS	ii
EXECUTIVE SUMMARY	1
STUDY METHODOLOGY	2
EXISTING CONDITIONS	3
Existing Roadway Network	3
SURROUNDING LAND USES	
PUBLIC TRANSPORTATION	
Emergency Services	
Accident History	
EXISTING TRAFFIC VOLUMES	
PEDESTRIAN VOLUMES	
Adjusted Traffic Volume Flow Rate	
Percent Heavy Vehicle Adjusted Pedestrian Analysis	
NO BUILD CONDITIONS	
Ambient Traffic Growth	
OTHER PLANNED PROJECTS	
FUTURE BUILD CONDITIONS	
TRIP GENERATION	
SITE ACCESS	
Modal Split	
Pedestrian Activity	
TRIP DISTRIBUTION	
Parking Study	
PARKING GENERATION	
TANDEM PARKING	
CONSTRUCTION	35
Project Schedule	
LEVEL OF SERVICE TABLES	
POTENTIAL LEVEL OF SERVICE IMPACTS BUILD CONDITIONS	
FINDINGS	
MITIGATION	
CONCLUSIONS	60

TECHNICAL APPENDIX TABLE OF CONTENTS

SECTION NO. 01	
SECTION NO. 02	INTERSECTION TURNING MOVEMENT COUNTS
SECTION NO. 03	
SECTION NO. 04	INTERSECTION CAPACITY ANAYSIS

EXECUTIVE SUMMARY

- Mulryan Engineering, P.C. has prepared a traffic engineering analysis of the roadway network surrounding the site of the proposed residential development located on the west side of Middle Neck Road between Clover Drive and Old Mill Road. The site is in the Village of Great Neck. The Village of Great Neck is located within the Town of North Hempstead in Nassau County, New York.
- The subject property is currently developed with a 119 apartment units and 134 parking spaces. The overall project site is 4.35 acres (189,480 square feet).
- The proposed project will improve the site with a total of 186 apartment units and 314 parking spaces. In accordance with the Village of Great Neck zoning requirements, the proposed development requires 314 parking spaces. The proposed site design meets the requirements of the code.
- A total of 101 new units will be constructed within three proposed buildings. A total of 34 existing units will be removed as part of the proposed development.
- The proposed site will maintain the existing site driveways. The site has one driveway to the north, one in the center of the property and one to the south. The central driveway is known as Millbrook Court.
- The north and south driveways will be reconfigured. The south driveway will allow entrance only traffic flow from Middle Neck Road. The north driveway will permit exit only traffic flow onto Middle Neck Road. The center driveway/Millbrook Court will maintain two way traffic flow.
- The site access design and parking configuration is illustrated on the site plan set prepared by Newman Design Architects, PLLC. The site access design requires the review and approval of the Village of Great Neck and the Nassau County Department of Public Works.
- It is recommended that "Do Not Block The Box" pavement markings and signage be installed at the North Site Access. No mitigation measures were found to be warranted at the surrounding study intersections. The Highway Capacity Analysis shows that the traffic generated by the proposed development will have no perceptible impact on the level of service at the surrounding study intersections. Based on our traffic engineering analysis contained within, the proposed development will have no adverse impact to the surrounding roadway network.

STUDY METHODOLOGY

The traffic engineering analysis prepared for this project serves as the basis for this report and the recommendations and conclusions contained within. This report is based on the recommended guidelines and practices outlined by the Institute of Transportation Engineers (ITE). This study identifies the changes in traffic movements along the adjacent roadway network which will occur as a result of the proposed development and identifies the potential impact of the future build condition on the adjacent street system. The report analyzes the following information:

• A review of the existing roadway and traffic conditions in the vicinity of the site including roadway geometry, traffic volumes, signal operations, and intersection capacities;

• A detailed review of the existing traffic volumes and travel patterns on the roadway network surrounding the site and a determination of the existing peak hour volumes during each of the time periods studied;

- Calculations of the projected ambient background traffic growth on the existing roadways;
- A review of the trip generation of other projects planned in proximity to the study area;

• Trip generation analysis of the volume of traffic expected to be generated by the proposed residential development;

• Highway capacity analysis of the existing and future traffic volumes considering the development of the site under future build conditions;

• An analysis of proposed driveway configuration, parking, and overall site layout in regards to access and internal circulation; and

• The results, findings and conclusions of our traffic engineering analysis of the existing roadway network and the future conditions based on the traffic characteristics of the proposed development of the subject site.

EXISTING CONDITIONS

EXISTING ROADWAY NETWORK

Figure No. 1 shows the roadway network and the area surrounding the subject site. The following provides a description of the key roadways located in proximity to the subject site.

Middle Neck Road provides two lanes in each direction and provides for on-street parking. Middle Neck Road is located to the east of the subject property. Middle Neck Road is under the jurisdiction of the Nassau County Department of Public Works.

Old Mill Road is located just north of the subject site. Old Mill Road connects to Bayview Avenue to the west. Bayview Avenue runs parallel to Middle Neck Road and is one of the key routes within the area. Bayview Avenue provides two lanes in each direction with turn lanes at key intersections. The cross section of Bayview Avenue changes to one lane in each direction between Cedar Drive and Old Mill Road.

Piccadilly Road is located opposite Old Mill Road at the intersection with Middle Neck Road. Piccadilly Road is a local roadway providing one lane in each direction.

Wooleys Lane provides one lanes in each direction. The intersection of Wooleys Lane and Middle Neck Road is controlled by a traffic signal located along the site frontage.

Clover Drive is under the jurisdiction of the Village of Great Neck Estates. Allenwood Road is a local roadway under the jurisdiction of the Town of North Hempstead.

The signalized intersections in this area are under the jurisdiction of the Nassau County Department of Public Works.

SURROUNDING LAND USES

The subject property is located between the Young Israel Synagogue to the south and an apartment complex to the north. Apartment buildings are also located on the east side of Middle Neck Road on either side of Wooleys Lane, opposite the subject site.

PUBLIC TRANSPORTATION

The area is served by the Long Island Railroad and two Nassau Inter-County Express (NICE) bus routes. Theses bus routes are the N57 Great Neck Loop and the N58 Great Neck Railroad Station-Kings Point. The N57 bus route travels on Middle Neck Road directly in front of the subject site. The N58 bus route travels on Steamboat Road directly in front of the subject site turning onto or off of Middle Neck Road.

The Nassau Inter-County Express (NICE) buses have a seating capacity of 45 including provisions for 2 wheelchairs and a standing capacity of 21 passengers. Each bus has a total capacity to accommodate 66 passengers.

In the morning 3 buses pass the site between 7 and 8 o'clock an additional 2 buses pass the site between 8 and 9:00 am. In the evening 3 buses pass the site between 5 and 6 o'clock an additional 2 buses pass the site between 6 and 7:00 pm.

The Great Neck train station is located along the Port Washington train line with service to Port Washington and Penn Station in Manhattan. The Great Neck train station is less than 2 miles from the subject site.

EMERGENCY SERVICES

Police Services: The Village of Great Neck is patrolled by the Nassau County Police Department 6th Precinct. Fire and Ambulance Services: The site is located between two volunteer Fire Stations, the Great Neck Vigilant Fire Company to the south and the Great Neck Alert Fire Department to the west.

Great Neck Vigilant Fire Company 83 Cuttermill Road Great Neck, New York 11021

Great Neck Alert Fire Department 555 Middle Neck Road (Annex firehouse at 142 Steamboat Road) Great Neck, New York 11023

North Shore Hospital is the closest hospital to the subject site. It is located on Community Drive in Manhasset.

ACCIDENT HISTORY

Motor vehicle accident history reports pertaining to the adjacent roadway network were obtained from the Nassau County Police Department. The reports document motor vehicle accidents that took place along the roadway network and at the study intersections. The Nassau County Police Department reports span a period of 39-month beginning in January 2012 and ending on April 1, 2015.

According to the Nassau County Police Department records, as of June 25, 2015, no accidents were reported at or in the vicinity of the following locations:

- Middle Neck Road at the North Site Access
- Middle Neck Road at the South Site Access

On Sunday, March 30, 2014 at 9:36 am, a motor vehicle accident occurred on Old Mill Road 100 feet west of Middle Neck Road. The accident involved a pedestrian fatality. Pedestrian confusion, unsafe speed and slippery pavement were listed as factors that contributed to the accident. No other fatalities were reported within the study area over the 39 month study period.

Tables Acc1 through Acc10 provide a detailed summary of the accidents that have occurred, from January 1, 2012 through April 1, 2015, at or in the vicinity of the following intersections:

- Middle Neck Road at Old Mill Road
- Middle Neck Road at Wooleys Lane
- Middle Neck Road at Millbrook Court
- Middle Neck Road at Clover Drive
- Middle Neck Road at Allenwood Road

Four accidents were reported at or in proximity to Millbrook Court. Apparent contributing factors in these accidents included following too closely, failure to yield the right-of-way, and backing unsafely. Three of the accidents occurred on Middle Neck Road and one occurred on Millbrook Court. No pedestrians were involved in these accidents.

The site access design will lower traffic volumes on Millbrook Court and restrict specific turning movements at both the north and south driveways. The north and south driveways will provide one way traffic flow upon completion of the project. Restricting turning movements will decrease the number of conflict points at the north and south driveways improving safety.

t:	ineering, P.C. Village of Great Neck		Table No. A
No.	M15-012		
	Middle Neck Road and Old Mill Road/Piccadill Detailed Accident Statistics	y Road	
	Accident Location	Total	Percentage
	At Intersection	12	46%
	North of Intersection East of Intersection	7 0	27%
	South of Intersection	4	15%
	West of Intersection	3	12%
	a v		D (
	Severity Property Damage Only	Total 20	Percentage 74%
	Accident with Injuries	6	22%
	Accident with Fatalities	1	4%
Code 1:	Pedestrian Location	Total	Percentage
	10 At Intersction	2	8%
	20 Not at Intersection	0	
1.	30 Non-Pedestrian Accident	24	92%
Code 2:	Pedestrian Action	Total	Percentage
	01 Crossing, With Signal	0	
	02 Crossing, Against Signal	0	
	03 Crossing, No Signal, Marked Crosswalk 04 Crossing, No Signal or Crosswalk	2 0	100%
	05 Riding/Walking/Skating Alone Highway With Traffic	0	
	06 Riding/Walking/Skating Alone Highway Against Traffic	0	
	07 Emerging from in Front of/Behind Parked Vehicle 08 Going to/from Stopped School Bus	0 0	
	09 Getting On/Off Vehicle Other than School Bus	0	
2.	11 Working in Roadway	0	
	12 Playing in Roadway	0	
	13 Other Actions in Roadway 14 Not in Roadway (Indicate)	0 0	
2.	· · · · · · · · · · · · · · · · · · ·	0	
Code 3:		Total	Percentage
	01 None 02 Traffic Signal	12 13	46% 50%
	03 Stop Sign	0	
	04 Flashing Light	0	
	05 Yield Sign 06 Officer/Guard	0 0	
	07 No Passing Zone	0	
3.	08 RR Crossing Sign	0	
	09 RR Crossing Flashing Light 10 RR Crossing Gate	0 0	
	11 Stopped School Bus-Red Lights Flashing	0	
3.	12 Construction Work Area	1	4%
	13 Maintenance Work Area	0	
	14 Utility Work Area 15 Police/Fire Emergency	0 0	
3.	16 School Zone	0	
3.	20 Other	0	
Code 4:	Light Conditions	Total	Percentage
4.	01 Daylight	21	81%
	02 Dawn	1	4%
	03 Dusk 04 Dark-Road Lighted	0 4	
	05 Dark-Road Unlighted	0	
C-3- 7	Deadway Character	70°, 4° 1	Donos-t
Code 5:	Roadway Character 01 Straight and Level	Total 18	Percentage 69%
	02 Straight and Grade	4	15%
	03 Straight at Hillcrest	0	
	04 Curve and Level 05 Curve and Grade	4 0	15%
	06 Curve at Hillcrest	0	
Code 6:	Roadway Surface Condition	Total	Percentage
	01 Dry	10121	58%
6.	02 Wet	8	31%
	03 Muddy	0	
	04 Snow/Ice 05 Slush	3 0	12%
	06 Flooded	0	
	00 Other	0	

	neering, P.C.						Table No. AC
et: ct No.	Village of Great Neck M15-012						
CI INU.	W115-012						
		and Old Mill Road/P		oad			
	Detai	led Accident Statistic	,				
C 1 7	XX a					T ()	D (
Code 7:	Weather Clear					Total 13	Percentage 50%
	2 Cloudy					5	19%
	3 Rain					8	31%
7.04	Snow					0	
7.05	5 Sleet/Hail/Freezing Rain					0	
	5 Fog/Smog/Smoke					0	
7.00) Other					0	
Code 19:	Apparent Contributing Factors	Veh 1	Veh 2	Veh 3	Veh 4	Total	Percentage
coue 17.	Human	Code 19	Code 20	Code 21	Code 22	Total	Tereentage
19.02	2 Alcohol Involvement	0	0	0	0	0	
	Backing Unsafely	1	0	0	0	1	3%
19.04	Driver Inattention/Distraction	1	0	0	0	1	3%
	5 Driver Inexperience	0	0	0	0	0	
	5 Drugs (illegal)	0	0	0	0	0	
	Failure to Yield Right-of-Way	5	1	0	0	6	16%
	B Fell Asleep	0	0	0	0	0	
	P Following Too Closely	4	0	0	0	4 0	11%
) Illness Lost Consciousness	0	0	0	0 0	0	
	2 Passenger Distraction	0	0	0	0	0	
	Passing or Lane Usage Improper	3	1	1	0	5	14%
	Pedestrian /Bicyclist/Other Pedestrian Error/Confusion	0	0	1	0	1	3%
	5 Physical Disability	0	0	0	0	0	
	Prescription Medication	0	0	0	0	0	
	Traffic Control Disregarded	0	0	0	0	0	
	3 Turning Improperly	1	0	2	0	3	8%
19.19	Unsafe Speed	1	3	0	0	4	11%
19.20) Unsafe Lane Changing	3	0	0	0	3	8%
19.21	Fatigued/Drowsy	0	0	0	0	0	
	2 Cell Phone (hand-held)	0	0	0	0	0	
	8 Cell Phone (hands-free)	0	0	0	0	0	
	Other Electronic Device	0	0	0	0	0	
	Outside Car Distraction	0	0	0	0	0	
	6 Reaction to Other Uninvolved Vehicle	0	0 0	0 0	0 0	0 0	
	7 Failure to Keep Right 8 Aggressive Driving/Road Rage	0	0	0	0	0	
17.20	Vehicular	0	0	0	0	0	
19.41	Accelerator Defective	0	0	0	0	0	
	2 Brakes Defective	0	0	0	0	0	
	B Headlights Defective	0	0	0	0	0	
	Other Lighting Defective	0	0	0	0	0	
	5 Oversized Vehicle	0	0	0	0	0	
	5 Steering Failure	0	1	0	0	1	3%
	7 Tire Failure/Inadequate	0	0	0	0	0	
	3 Tow Hitch Defective	0	0	0	0	0	
	Windshield Inadequate	0	0	0	0	0	
) Driverless/Runaway Vehicle	0	0	0	0	0	
19.60) Other Vehicular Environmental	1	0	0	0	1	3%
10.61	Animal's Action	0	0	0	0	0	
	2 Glare	0	0	0	0	0	
	B Lane Marking Improper/Inadequate	0	0	0	0	0	
	Obstruction/Debris	0	1	0	0	1	3%
	Pavement Defective	0	0	0	0	0	
	5 Pavement Slippery	4	1	0	0	5	14%
	Shoulder Defective/Improper	0	0	0	0	0	
	3 Traffic Control Device Improper/Non-Working	0	0	0	0	0	
19.69	View Obstruction/Limited	1	0	0	0	1	3%
Codo 22.	Direction of Vehicle	Veh 1	Veh 2			Total	Percentage
Coue 23:	Battaon of Venice	Code 23	Code 24			1 Utdl	1 ci centage
23.01	North	7	Code 24 7			14	31%
	2 North-East	1	0			14	2%
	BEast	3	2			5	11%
	South-East	0	1			1	2%
	5 South	9	8			17	38%
23.06	5 South-West	3	0			3	7%
22.07	West	3	1			4	9%
23.07		5	-				

		Middle Neck Road and Old M Detailed Accide				
Code 25:	Pre-Accident Vehicle Action		Veh 1 Code 25	Veh 2 Code 26	Total	Percentage
	Going Straight Ahead		10	8	18	40%
	2 Making Right Turn 5 Making Left Turn		2 5	2 0	4 5	9% 11%
	Making U Turn		0	1	1	2%
	Starting from Parking		0	0	0	
	Starting in Traffic		1	0	1	2%
	Slowing or Stopping Stopped in Traffic		3 0	3 0	6 0	13%
	Entering Parked Position		0	1	1	2%
25.10	Parked		0	2	2	4%
	Avoiding Object in Roadway		0	0	0	
	Changing Lanes Passing		3 1	1 0	4	9% 2%
	Merging		1 0	0	0	270
25.15	Backing		1	0	1	2%
	Making Right Turn on Red		0	0	0	
	Making Left Turn on Red		0 0	1 0	1 0	2%
	Other		0	0	0	
27.01	Location of First Event On Roadway				Total 23	Percentage 88%
27.02	2 Off Roadway				3	12%
Code 28:	Type of Accident Collision With	First Event Code 28	Veh 1 Code 29	Veh 2 Code 30	Total	Percentage
28.01	Other Motor Vehicle	19	0	0	19	59%
	Pedestrian	2	1	0	3	9%
	Bicyclist	0	0	0	0	
	Animal Railroad Train	0 0	0 0	0 0	0	
	In-Line Skater	0	0	0	0	
	Deer	0	0	0	0	
	Other Pedestrian Other Object (Not Fixed) Collision with Fixed Object	0 0	0 0	0 0	0 0	
28.11	Light Support /Utility Pole	0	1	0	1	3%
	Guide Rail - Not At End	0	0	0	0	
	Crash Cushion Sign Post	0	0 0	0	0	 3%
	Tree	0	0	0	0	
	Building/Wall	0	1	0	1	3%
	Curbing	4	1 0	0	5	16%
	B Fence Bridge Structure	0 0	0	0 0	0	
28.20	Culvert/Head Wall	0	0	0	0	
	Median - Not At End	0	0	0	0	
	2 Snow Embankment 3 Earth Embankment/Rock Cut/Ditch	0 0	0 0	0 0	0	
	Fire Hydrant	0	0	0	0	
28.25	Guide Rail - At End	0	0	0	0	
	Median - End	0	1	0	1	3%
	⁷ Barrier 9 Other Fixed Object No Collision	0 0	0 0	0 0	0 0	
	Overturned	0	0	0	0	
	E Fire/Explosion Submersion	0 0	0 0	0 0	0	
	Ran Off Roadway Only	0	0	0	0	
) Other	0	1	0	1	3%

Material State Material State Alter Avelant BinedYcselly Biad State Avelant Biad Materia Avelant Biad State Avelant Biad Table Numer Avelant Biad Materia Avelant Biad Materia Avelant Colspan="2">State Avelant Biad Materia Avelant Biad Materia Avelant Colspan="2">State Avelant Biad Materia Avelant Colspan="2">State Avelant Biad Materia Avelant Colspan="2">State Avelant Biad Materia Avelant Colspan="2">Materia Avelant Colspan="2">State Avelant Biad Materia Avelant Colspan="2">State Avelant Biad Materia Avelant Colspan="2">Materia Avelant Colspan="2">State Avelant Biad Materia Avelant Avel	Mulryan Engineering, P.C. Hamlet: Village of G Project No. M15-012	neering, P.C. Village of Great Neck M15-012	Great Nec	÷																					Table	lable No. AUU2	111
Task makes of vicus:								Mide	lle Necl	k Road NCDI Sund Wedr	and Ol W Acc ay, Jan thr esday,	d Mill : sident F uuary 0: ough April 0	Road/Pi kecords l, 2012 1, 2015	ccadill	7 Road												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ave	Total rage Number (Numb Num Number Mumber	er of Mont iber of Yei of Accidei nts per Ye		39.0 3.3 8.7		Total Nu	mber o	Tota Tota Tota f Accid	l Numl l Numl l Numl ents in	oer of A Ser of A Ser of A 2015 (5	ccident ccident ccident lanuary	s in 201 s in 201 s in 201 -March		• • • •											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															NCPL	Accide	ant Cod	es							_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Accident_No.	Date	Hr	Min	0 #	of Veh # of			7	e	4			19	20	21	22	~					29	30	Dist	Di	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	060-0378-2012	02/01/12	21	30 24	0 0	0 0	0 0	0 0	0 0	~ - 1	4 -	4 4		6 0 0	0 0	0 18	0 0		s v	- 5 - 5			0 0	0 0	0 250	_ Z	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	060-1069-2012	04/13/12	13	21	10		0	0	0	- 0				99	0	0	0		2.0				0	0	0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	060-1952-2012	06/18/12	17	35 55	00	- 0	0 0	0 0	0 0					8,	46	0 0	0 0				0 - 2		0 0	0 0	200	ZŻ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	030-3909-2012	00/19/12 07/18/12	15	05 05	2 0	0 1	00	00	0 0	- 6				- 6	0 1-				o —				0 0		6 c	z 🗕	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	030-3910-2012	07/18/12	16	10	7	0	0	0	0	-	-	-	, 3	0	0	13	0		5	1	2	-	0	0	150	z	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	030-5360-2012	09/04/12	96	40	00	0 0	0 0	0 0	0 0	00	0-		с, С	99	0 5	0 0	0 0				7		0 0	0 0	2 0	S -	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	030-7347-2012	11/06/12	14	30	10	0 0	0 0	0 0	00	- v		- 0		13 20	0	0 0	0 0			 			00	00	9	- S	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	060-0670-2012	03/06/12	16	25	0	0	0	0	0	0	_	_	_	18	0	0	0				-	-	0	0	0	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	030-0785-2013 030-2641-2013	01/29/13	2 8	9 9	~ ~	0 0	0 0	0 0	0 0	- 10			- 17	r 4	0 0	0 0	0 0			10			0 0	0 0	0 5	_ Z	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	030-3759-2013	05/11/13	16	88	- 1	00	0 0	0 0	0 0			- 4	- 61	0 4	0 0	0 0	0 0			2		17	40	00	6 6	ΖZ	
030014 12 36 1 0 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0	031-1080-2013	12/21/13	18	30	(- 0	0		ε	0	4-			r 1	0	0	0					- 17	0	0	0		
050314 14 19 1 1 0 1 2 0	030-2549-2014 030-2651-2014	03/20/14	7 Q	30 36	7 -		-		-	7 -				19	0	0						17	⊃ r		001	M	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	030-3632-2014	05/03/14	9 4	19		o	• 0		с м	- 61				7	80	0	0					6	10	0	0	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	031-1692-2014	12/31/14	12	30	0	0	0	0	0	0	-	_	5	13	0	0	0	-		-	-	-	0	0	0	Η	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	030-9318-2014 030-9823-2014	10/27/14	60 50	30 38	- 10	0 0	0 0	0 0	0 0	12	1 4	- T		50	0 0	0 0	0 0			-		14	0 76	0 0	100	νz	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	030-0523-2015	01/18/15	08	50	-	0	0	0	0					99	19	0	0		0	0		17	16	0	500	M	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	030-0527-2015	01/18/15	60 ;	00	00	0	0	0 0	0					99	19	18	0						17	0	100	≥,	
	030-2286-2015 030-0531-2015	01/18/15	- 60	60 00	- 17	0 -	0 0	0 0	0 0	2 6			n	9 99	0 61	0 0	o c				- 6	17	o =	0 0	007.0		
	030-0948-2015	02/01/15	17	10	0	0	0	0	0		4		. –	13	2	0	0			E o	0		0	0	50	ŝ	

yan Engi	ineering, P.C. Village of Great Neck		Table No. A
No.	M15-012		
	Middle Neck Road and Wooleys Lan Detailed Accident Statistics	e	
	Accident Location	Total	Percentage
	At Intersection	6	50% 25%
	North of Intersection East of Intersection	3	25% 8%
	South of Intersection	2	17%
	West of Intersection	0	
		T. ()	D (
	Severity Property Damage Only	Total 12	Percentage 100%
	Accident with Injuries	0	
	Accident with Fatalities	0	
Code 1:	Pedestrian Location	Total	Percentage
	10 At Intersction	0	
1.2	20 Not at Intersection	0	
1.3	30 Non-Pedestrian Accident	12	100%
Code 2:	Pedestrian Action	Total	Percentage
	DI Crossing, With Signal	0	
2.0	02 Crossing, Against Signal	0	
	03 Crossing, No Signal, Marked Crosswalk	0	
	04 Crossing, No Signal or Crosswalk	0 0	
	D5 Riding/Walking/Skating Alone Highway With Traffic D6 Riding/Walking/Skating Alone Highway Against Traffic	0	
	07 Emerging from in Front of/Behind Parked Vehicle	0	
	08 Going to/from Stopped School Bus	0	
	09 Getting On/Off Vehicle Other than School Bus	0	
	11 Working in Roadway 12 Playing in Roadway	0 0	
	13 Other Actions in Roadway	0	
	14 Not in Roadway (Indicate)	0	
G 1 2		T ()	D (
Code 3:	Traffic Control D1 None	Total 4	Percentage 33%
	02 Traffic Signal	8	67%
	03 Stop Sign	0	
	04 Flashing Light	0	
)5 Yield Sign)6 Officer/Guard	0 0	
	07 No Passing Zone	0	
	08 RR Crossing Sign	0	
	09 RR Crossing Flashing Light	0	
	10 RR Crossing Gate 11 Stopped School Bus-Red Lights Flashing	0 0	
	12 Construction Work Area	0	
	13 Maintenance Work Area	0	
	4 Utility Work Area	0	
	15 Police/Fire Emergency 16 School Zone	0 0	
	20 Other	0	
a • •			D. C
	Light Conditions 11 Daylight	Total 5	Percentage 42%
	02 Dawn	0	4270
)3 Dusk	0	
	04 Dark-Road Lighted	7	58%
4.0	05 Dark-Road Unlighted	0	
Code 5:	•	Total	Percentage
	01 Straight and Level	8	67%
	02 Straight and Grade 03 Straight at Hillcrest	3 0	25%
	04 Curve and Level	0	
5.0	05 Curve and Grade	1	8%
5.0	06 Curve at Hillcrest	0	
Code 6:	Roadway Surface Condition	Total	Percentage
	l Dry	7	58%
	22 Wet	4	33%
	03 Muddy	0	
)4 Snow/Ice)5 Slush	1 0	8%
	06 Flooded	0	
	00 Other	0	

ilet:	village of Creat Nack						Table No. A
aat No	Village of Great Neck M15-012						
ect No.	M15-012						
	Middle Net	ck Road and Wooleys	Lane				
		led Accident Statistics					
a 1 7	XX7 41					T ()	D (
Code 7:	Weather					Total 7	Percentage 58%
	2 Cloudy					0	
	3 Rain					4	33%
	4 Snow					1	8%
	5 Sleet/Hail/Freezing Rain					0	
	5 Fog/Smog/Smoke					0	
) Other					0 0	
Code 19:	Apparent Contributing Factors	Veh 1	Veh 2	Veh 3	Veh 4	Total	Percentage
	Human	Code 19	Code 20	Code 21	Code 22		-
19.02	2 Alcohol Involvement	1	0	0	0	1	7%
19.03	Backing Unsafely	0	0	0	0	0	
19.04	4 Driver Inattention/Distraction	0	0	0	0	0	
19.05	5 Driver Inexperience	0	0	0	0	0	
	5 Drugs (illegal)	0	0	0	0	0	
	7 Failure to Yield Right-of-Way	2	0	1	0	3	20%
	3 Fell Asleep	0	0	0	0	0	
	Following Too Closely	2	2	0	0	4	27%
) Illness	0	0	0	0	0	
	Lost Consciousness	0	0	0	0	0	
	2 Passenger Distraction	0	0	0	0	0	
	Passing or Lane Usage Improper	3	0	0	0	3	20%
	Pedestrian /Bicyclist/Other Pedestrian Error/Confusion	0	0	0	0	0	
	5 Physical Disability	0	0	0	0	0	
	5 Prescription Medication	0	0	0	0	0	
	7 Traffic Control Disregarded	0	0	0	0	0	
	3 Turning Improperly	0	0	0	0	0	
	Unsafe Speed	0		0			
) Unsafe Lane Changing	1	0	0	0	1	7%
	l Fatigued/Drowsy 2 Cell Phone (hand-held)	0	0	0	0	0	
	3 Cell Phone (hands-free)	0	0	0	0	0	
	4 Other Electronic Device	0	0	0	0	0	
	5 Outside Car Distraction	0	0	Ő	0 0	0	
	5 Reaction to Other Uninvolved Vehicle	0	Ő	0	ů 0	Ő	
	7 Failure to Keep Right	0	0	0	0	0	
	Aggressive Driving/Road Rage	0	0	0	ů 0	Ő	
	Vehicular						
19.41	Accelerator Defective	0	0	0	0	0	
19.42	2 Brakes Defective	0	0	0	0	0	
	3 Headlights Defective	0	0	0	0	0	
	4 Other Lighting Defective	0	0	0	0	0	
19.45	5 Oversized Vehicle	0	0	0	0	0	
19.46	5 Steering Failure	0	0	0	0	0	
19.47	7 Tire Failure/Inadequate	0	0	0	0	0	
19.48	3 Tow Hitch Defective	0	0	0	0	0	
	Windshield Inadequate	0	0	0	0	0	
) Driverless/Runaway Vehicle	0	0	0	0	0	
19.60) Other Vehicular	0	0	0	0	0	
	Environmental						
	Animal's Action	0	0	0	0	0	
	2 Glare	1	0	0	0	1	7%
	3 Lane Marking Improper/Inadequate	0	0	0	0	0	
	4 Obstruction/Debris	0	0	0	0	0	
	5 Pavement Defective	0	0	0	0	0	
	5 Pavement Slippery	1	0	1	0	2	13%
	7 Shoulder Defective/Improper	0	0	0	0	0	
	3 Traffic Control Device Improper/Non-Working	0	0	0	0	0	
19.69	View Obstruction/Limited	0	0	0	0	0	
0-1-02	Direction of Vahiala	17.1.4	¥7_1 A			T-4-1	Dor
Code 23:	Direction of Vehicle	Veh 1 Code 23	Veh 2 Code 24			Total	Percentage
aa aa	Nosth	Code 23				0	200/
	l North	5 0	4 0			9 0	39%
	2 North-East 3 East	0	0			0	
			0				
	4 South-East	1	0			1 5	4%
	, 30uu	2	3				22%
23.05			1			2	00/
23.05 23.06	5 South-West 7 West	1	1 2			2 4	9% 17%

zt No. M15-012 Code 25: Pre-Accident Vehicle Action 25.01 Going Straight Ahead 25.02 Making Left Turn 25.03 Making U Turn 25.04 Making U Turn 25.05 Starting from Parking 25.06 Starting in Traffic 25.07 Slowing or Stopping 25.08 Stopped in Traffic 25.09 Entering Parked Position 25.10 Parked 25.11 Avoiding Object in Roadway 25.12 Changing Lanes 25.13 Passing 25.14 Merging 25.15 Backing 25.16 Making Left Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway 27.02 Off Roadway 28.01 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist <th>Middle Neck Road a Detailed Accide</th> <th>nt Statistics Veh 1 Code 25 4 2 1 0 0 0 0 0 2 0 0 0 1 1 0 0 1 1 0 0 0 0</th> <th></th> <th>Total 9 3 1 0 0 0 2 2 2 0 4 0 1</th> <th>Percentage 39% 13% 4% 9% 9% 17%</th>	Middle Neck Road a Detailed Accide	nt Statistics Veh 1 Code 25 4 2 1 0 0 0 0 0 2 0 0 0 1 1 0 0 1 1 0 0 0 0		Total 9 3 1 0 0 0 2 2 2 0 4 0 1	Percentage 39% 13% 4% 9% 9% 17%
25.01 Going Straight Ahead 25.02 Making Right Turn 25.03 Making Left Turn 25.04 Making U Turn 25.05 Starting from Parking 25.06 Starting in Traffic 25.07 Slowing or Stopping 25.08 Stopped in Traffic 25.09 Entering Parked Position 25.10 Parked 25.11 Avoiding Object in Roadway 25.12 Changing Lanes 25.13 Passing 25.14 Merging 25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway 27.02 Off Roadway 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train	Detailed Accide	Veh 1 Code 25 4 2 1 0 0 0 2 0 0 0 2 0 0 0 1 1 0 0 1 1 0 0 0 0	Veh 2 Code 26 5 1 0 0 0 0 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0	9 3 1 0 0 0 2 2 0 4 0	39% 13% 4% 9% 9% 9% 17%
25.01 Going Straight Ahead 25.02 Making Right Turn 25.03 Making Left Turn 25.04 Making U Turn 25.05 Starting from Parking 25.06 Starting in Traffic 25.07 Slowing or Stopping 25.08 Stopped in Traffic 25.09 Entering Parked Position 25.10 Parked 25.11 Avoiding Object in Roadway 25.12 Changing Lanes 25.13 Passing 25.14 Merging 25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		Code 25 4 2 1 0 0 0 0 2 0 0 1 1 0 1 1 0 0 0 0 0 0	Code 26 5 1 0 0 0 0 2 0 3 0 3 0 0 0 0 0 0 0	9 3 1 0 0 0 2 2 0 4 0	39% 13% 4% 9% 9% 9% 17%
25.02 Making Right Turn 25.03 Making Left Turn 25.04 Making U Turn 25.05 Starting from Parking 25.06 Starting in Traffic 25.07 Slowing or Stopping 25.08 Stopped in Traffic 25.09 Entering Parked Position 25.10 Parked 25.11 Avoiding Object in Roadway 25.12 Changing Lanes 25.13 Passing 25.14 Merging 25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway 27.02 Off Roadway 27.02 Off Roadway 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		2 1 0 0 2 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0	1 0 0 0 0 2 0 3 0 0 0 0 0	3 1 0 0 2 2 2 0 4 0	13% 4% 9% 9% 17%
25.03 Making Left Turn 25.04 Making U Turn 25.05 Starting from Parking 25.06 Starting in Traffic 25.07 Slowing or Stopping 25.08 Stopped in Traffic 25.09 Entering Parked Position 25.10 Parked 25.11 Avoiding Object in Roadway 25.12 Changing Lanes 25.13 Passing 25.14 Merging 25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		1 0 0 2 0 0 1 1 0 1 1 0 0 0 0 0 0	0 0 0 2 0 3 0 0 0 0	1 0 0 2 2 2 0 4 0	4% 9% 9% 17%
25.04 Making U Turn 25.05 Starting from Parking 25.06 Starting in Traffic 25.07 Slowing or Stopping 25.08 Stopped in Traffic 25.09 Entering Parked Position 25.10 Parked 25.11 Avoiding Object in Roadway 25.12 Changing Lanes 25.13 Passing 25.14 Merging 25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		0 0 2 0 0 1 1 1 0 0 0 0 0 0 0	0 0 0 2 0 3 0 0 0 0	0 0 2 2 0 4 0	 9% 9% 17%
25.05 Starting from Parking 25.06 Starting in Traffic 25.07 Slowing or Stopping 25.08 Stopped in Traffic 25.09 Entering Parked Position 25.10 Parked 25.11 Avoiding Object in Roadway 25.12 Changing Lanes 25.13 Passing 25.14 Merging 25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		0 0 2 0 0 1 1 0 1 1 0 0 0 0 0 0	0 0 2 0 3 0 0 0	0 0 2 2 0 4 0	9% 9% 17%
25.06 Starting in Traffic 25.07 Slowing or Stopping 25.08 Stopped in Traffic 25.09 Entering Parked Position 25.10 Parked 25.11 Avoiding Object in Roadway 25.12 Changing Lanes 25.13 Passing 25.14 Merging 25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		0 2 0 1 1 0 1 1 0 0 0 0 0 0	0 0 2 0 3 0 0 0	0 2 2 0 4 0	9% 9% 17%
25.07 Slowing or Stopping 25.08 Stopped in Traffic 25.09 Entering Parked Position 25.10 Parked 25.11 Avoiding Object in Roadway 25.12 Changing Lanes 25.13 Passing 25.14 Merging 25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		2 0 1 0 1 1 1 0 0 0 0 0 0	0 2 0 3 0 0 0	2 2 0 4 0	9% 9% 17%
25.08 Stopped in Traffic 25.09 Entering Parked Position 25.10 Parked 25.11 Avoiding Object in Roadway 25.12 Changing Lanes 25.13 Passing 25.14 Merging 25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		0 0 1 0 1 1 0 0 0 0 0 0	2 0 3 0 0 0	2 0 4 0	9% 17%
25.09 Entering Parked Position 25.10 Parked 25.11 Avoiding Object in Roadway 25.12 Changing Lanes 25.13 Passing 25.14 Merging 25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		0 1 0 1 1 1 0 0 0 0 0 0	0 3 0 0 0	0 4 0	17%
25.10 Parked 25.11 Avoiding Object in Roadway 25.12 Changing Lanes 25.13 Passing 25.14 Merging 25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		0 1 0 0 0 0	3 0 0 0	4 0	17%
25.12 Changing Lanes 25.13 Passing 25.14 Merging 25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		1 1 0 0 0 0	0 0		
25.13 Passing 25.14 Merging 25.15 Backing 25.15 Backing Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		1 0 0 0 0	0	1	
25.14 Merging 25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		0 0 0 0			4%
25.15 Backing 25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		0 0 0	0	1	4%
25.16 Making Right Turn on Red 25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		0 0		0	
25.17 Making Left Turn on Red 25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		0	0	0	
25.18 Police Pursuit 25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train			0	0	
25.20 Other Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		0	0 0	0 0	
Code 27: Location of First Event 27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		0	0	0	
27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train		0	0	U	
27.01 On Roadway 27.02 Off Roadway Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train				Total	Percentage
Code 28: Type of Accident Collision With 28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train				12	100%
28.01 Other Motor Vehicle 28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train				0	
28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train	First Event	Veh 1	Veh 2	Total	Percentage
28.02 Pedestrian 28.03 Bicyclist 28.04 Animal 28.05 Railroad Train	Code 28	Code 29	Code 30		
28.03 Bicyclist 28.04 Animal 28.05 Railroad Train	11	0	0	11	85%
28.04 Animal 28.05 Railroad Train	0	0	0	0	
28.05 Railroad Train	0	0	0	0	
	0	0	0 0	0 0	
	0	0	0	0	
28.07 Deer	0	0	0	0	
28.08 Other Pedestrian	0	0	0	0	
28.10 Other Object (Not Fixed) Collision with Fixed Object	0	0	0	0	
28.11 Light Support /Utility Pole	0	0	0	0	
28.12 Guide Rail - Not At End	0	0	0	0	
28.13 Crash Cushion	0	0	0	0	
28.14 Sign Post	0	1	0	1	8%
28.15 Tree	1 0	0	0 0	1 0	8%
28.16 Building/Wall 28.17 Curbing	0	0	0	0	
28.17 Curbing 28.18 Fence	0	0	0	0	
28.19 Bridge Structure	0	0	0	0	
28.20 Culvert/Head Wall	0	0	0	0	
28.21 Median - Not At End	0	0	0	0	
28.22 Snow Embankment	0	0	0	0	
28.23 Earth Embankment/Rock Cut/Ditch	0	0	0	0	
28.24 Fire Hydrant	0	0	0	0	
28.25 Guide Rail - At End 28.26 Median - End	0	0 0	0	0	
28.26 Median - End 28.27 Barrier	0	0	0 0	0 0	
28.27 Barrier 28.30 Other Fixed Object No Collision	0	0	0	0	
28.31 Overturned	0	0	0	0	
28.32 Fire/Explosion	0	0	0	0	
28.33 Submersion	0	0	0	0	
28.34 Ran Off Roadway Only	0	0	0	0	
28.40 Other	0	0	0	0	

- 1 of 1 -

yan Engin	eering, P.C. Village of Great Neck		Table No.
No.	M15-012		
	Middle Neck Road and Millbrook Court		
	Detailed Accident Statistics		
	Accident Location	Total	Percentage
	At Intersection North of Intersection	2	50% 25%
	East of Intersection	1 0	25%
	South of Intersection	0	
	West of Intersection	1	25%
			_
	Severity	Total 2	Percentage
	Property Damage Only Accident with Injuries	2	50% 50%
	Accident with Fatalities	0	
	Pedestrian Location	Total	Percentage
	At Intersction Not at Intersection	0 0	
	Non-Pedestrian Accident	4	100%
1.50	······································	,	
Code 2:	Pedestrian Action	Total	Percentage
	Crossing, With Signal	0	
	Crossing, Against Signal Crossing, No Signal, Marked Crosswalk	0	
	Crossing, No Signal, Marked Crosswalk Crossing, No Signal or Crosswalk	0 0	
	Riding/Walking/Skating Alone Highway With Traffic	0	
	Riding/Walking/Skating Alone Highway Against Traffic	0	
	Emerging from in Front of/Behind Parked Vehicle	0	
	Going to/from Stopped School Bus	0	
	Getting On/Off Vehicle Other than School Bus	0 0	
	Working in Roadway Playing in Roadway	0	
	Other Actions in Roadway	0	
	Not in Roadway (Indicate)	0	
~ • •			
	Traffic Control None	Total 3	Percentage 75%
	Traffic Signal	0	1370
	Stop Sign	1	25%
	Flashing Light	0	
	Yield Sign	0	
	Officer/Guard	0	
	No Passing Zone RR Crossing Sign	0 0	
	RR Crossing Flashing Light	0	
	RR Crossing Gate	0	
	Stopped School Bus-Red Lights Flashing	0	
	Construction Work Area	0	
	Maintenance Work Area	0 0	
	Utility Work Area Police/Fire Emergency	0	
	School Zone	0	
	Other	0	
a b b		m	D (
	Light Conditions Daylight	Total 3	Percentage 75%
	Daynght	3 0	/5%
	Dusk	0	
	Dark-Road Lighted	0	
4.05	Dark-Road Unlighted	1	25%
Code 5.	Doodway Character	Total	Doroontogo
	Roadway Character Straight and Level	1 otal 4	Percentage 100%
	Straight and Grade	0	
	Straight at Hillcrest	0	
5.04	Curve and Level	0	
	Curve and Grade	0	
5.06	Curve at Hillcrest	0	
Code 6:	Roadway Surface Condition	Total	Percentage
6.01		3	75%
	Wet	1	25%
6.03	Muddy	0	
	Snow/Ice	0	
	Slush	0	
6.06	Flooded Other	0	

	neering, P.C.						Table No. AC
ilet: ect No.	Village of Great Neck M15-012						
ect No.	M15-012						
	Middle Neck	Road and Millbrool	k Court				
	Detaile	d Accident Statistics	5				
Code 7:	Weather					Total	Percentage
	1 Clear					2	50%
	2 Cloudy					2	50%
	3 Rain					0	
	4 Snow					0	
7.0	5 Sleet/Hail/Freezing Rain					0	
7.0	6 Fog/Smog/Smoke					0	
7.0	0 Other					0	
Code 19:	Apparent Contributing Factors	Veh 1	Veh 2	Veh 3	Veh 4	Total	Percentage
	Human	Code 19	Code 20	Code 21	Code 22		
	2 Alcohol Involvement	0	0	0	0	0	
	3 Backing Unsafely	1	0	0	0	1	20%
	4 Driver Inattention/Distraction	0	0 0	0	0 0	0 0	
	5 Driver Inexperience 6 Druge (illegal)	0	0	0	0	0	
	6 Drugs (illegal) 7 Foilure to Vield Pight of Way	0	1	0	0	2	
	7 Failure to Yield Right-of-Way 8 Fell Asleep	1	1 0	0	0	2	40%
	9 Following Too Closely	0	0	0	0	2	40%
	0 Illness	2	0	0	0	2	40%
	1 Lost Consciousness	0	0	0	0	0	
	2 Passenger Distraction	0	0	0	0	0	
	3 Passing or Lane Usage Improper	0	0	0	0	0	
	4 Pedestrian /Bicyclist/Other Pedestrian Error/Confusion	0	Ő	0	0	0	
	5 Physical Disability	0	Ő	0	0	0	
	6 Prescription Medication	0	0	0	0	0	
	7 Traffic Control Disregarded	0	0	0	0	0	
	8 Turning Improperly	0	0	0	0	0	
	9 Unsafe Speed	0	0	0	0	0	
	0 Unsafe Lane Changing	0	0	0	0	0	
	1 Fatigued/Drowsy	0	0	0	0	0	
19.2	2 Cell Phone (hand-held)	0	0	0	0	0	
19.2	3 Cell Phone (hands-free)	0	0	0	0	0	
19.2	4 Other Electronic Device	0	0	0	0	0	
19.2	5 Outside Car Distraction	0	0	0	0	0	
19.2	6 Reaction to Other Uninvolved Vehicle	0	0	0	0	0	
19.2	7 Failure to Keep Right	0	0	0	0	0	
19.2	8 Aggressive Driving/Road Rage	0	0	0	0	0	
	Vehicular						
	1 Accelerator Defective	0	0	0	0	0	
	2 Brakes Defective	0	0	0	0	0	
	3 Headlights Defective	0	0	0	0	0	
	4 Other Lighting Defective	0	0	0	0	0	
	5 Oversized Vehicle	0	0	0	0	0	
	6 Steering Failure	0	0	0	0	0	
	7 Tire Failure/Inadequate	0	0	0	0	0	
	8 Tow Hitch Defective	0	0	0	0	0	
	9 Windshield Inadequate	0	0	0	0	0	
	0 Driverless/Runaway Vehicle	0	0 0	0	0	0 0	
19.6	0 Other Vehicular	0	0	0	0	0	
10 6	Environmental 1 Animal's Action	0	0	0	0	0	
	2 Glare	0	0	0	0	0	
	2 Glare 3 Lane Marking Improper/Inadequate	0	0	0	0	0	
	4 Obstruction/Debris	0	0	0	0	0	
	5 Pavement Defective	0	0	0	0	0	
	6 Pavement Slippery	0	0	0	0	0	
	7 Shoulder Defective/Improper	0	0	0	0	0	
	8 Traffic Control Device Improper/Non-Working	0	0	0	0	0	
	9 View Obstruction/Limited	0	0	0	0	0	
19.0		0	5	5	0	0	
Code 23:	Direction of Vehicle	Veh 1	Veh 2			Total	Percentage
2240 201		Code 23	Code 24				Be
23.0	1 North	0	0			0	
	2 North-East	1	0			1	13%
	3 East	1	1			2	25%
	4 South-East	0	0			0	
	5 South	2	3			5	63%
23.0	6 South-West	0	0			0	
23.0	7 West	0	0			0	
	8 North-West	0	0			0	

: No.	Village of Great Neck M15-012					
		Middle Neck Road and Detailed Accide				
Code 25	: Pre-Accident Vehicle Action		Veh 1 Code 25	Veh 2 Code 26	Total	Percentage
	01 Going Straight Ahead		2	1	3	38%
	02 Making Right Turn 03 Making Left Turn		0 1	0 0	0	13%
	04 Making U Turn		0	0	0	13%
	05 Starting from Parking		0	0	0	
	06 Starting in Traffic		0	0	0	
	07 Slowing or Stopping		0	2	2	25%
	08 Stopped in Traffic 09 Entering Parked Position		0	0 0	0	
	10 Parked		0	1	1	13%
	11 Avoiding Object in Roadway		0	0	0	
	12 Changing Lanes		0	0	0	
	13 Passing		0	0 0	0 0	
	14 Merging 15 Backing		0	0	0	13%
	16 Making Right Turn on Red		0	0	0	
25.	17 Making Left Turn on Red		0	0	0	
	18 Police Pursuit		0	0	0	
25.	20 Other		0	0	0	
Code 27	: Location of First Event				Total	Percentage
	01 On Roadway				4	100%
27.	02 Off Roadway				0	
Code 28	3: Type of Accident Collision With	First Event	Veh 1	Veh 2	Total	Percentage
20	01 Other Motor Vehicle	Code 28	Code 29 0	Code 30 0	4	100%
	02 Pedestrian	4 0	0	0	4 0	
	03 Bicyclist	0	0	0	0	
	04 Animal	0	0	0	0	
	05 Railroad Train	0 0	0 0	0 0	0	
	06 In-Line Skater 07 Deer	0	0	0	0	
	08 Other Pedestrian	0	0	0	0	
	10 Other Object (Not Fixed) Collision with Fixed Object	0	0	0	0	
	 Light Support /Utility Pole Guide Rail - Not At End 	0 0	0 0	0 0	0	
	13 Crash Cushion	0	0	0	0	
	14 Sign Post	0	0	0	0	
	15 Tree	0	0	0	0	
	16 Building/Wall	0 0	0 0	0 0	0	
	17 Curbing 18 Fence	0	0	0	0	
	19 Bridge Structure	0	0	0	0	
	20 Culvert/Head Wall	0	0	0	0	
	21 Median - Not At End 22 Snow Embankment	0 0	0 0	0 0	0 0	
	23 Earth Embankment/Rock Cut/Ditch	0	0	0	0	
28.	24 Fire Hydrant	0	0	0	0	
	25 Guide Rail - At End	0	0	0	0	
	26 Median - End 27 Barrier	0 0	0 0	0 0	0 0	
	30 Other Fixed Object No Collision	0	0	0	0	
	31 Overturned	0	0	0	0	
	32 Fire/Explosion	0	0 0	0	0	
	33 Submersion 34 Ran Off Roadway Only	0 0	0	0 0	0	
	40 Other	0	0	0	0	

- 1 of 1 -

ryan Eng et:	zineering, P.C. Village of Great Neck		Table No. A
et: et No.	M15-012		
	Middle Neck Road and Clover Drive		
	Detailed Accident Statistics		
	Accident Location	Total	Percentage
	At Intersection North of Intersection	0	100%
	East of Intersection	0	
	South of Intersection	0	
	West of Intersection	0	
	Severity	Total	Percentage
	Property Damage Only	1	100%
	Accident with Injuries Accident with Fatalities	0 0	
	Accident with Fatanties	0	
Code 1		Total	Percentage
	10 At Intersection	0	
	20 Not at Intersection 30 Non-Pedestrian Accident	0	100%
Code 2		Total	Percentage
	.01 Crossing, With Signal .02 Crossing, Against Signal	0 0	
	.03 Crossing, No Signal, Marked Crosswalk	0	
2	.04 Crossing, No Signal or Crosswalk	0	
	.05 Riding/Walking/Skating Alone Highway With Traffic .06 Riding/Walking/Skating Alone Highway Against Traffic	0 0	
	.07 Emerging from in Front of/Behind Parked Vehicle	0	
	.08 Going to/from Stopped School Bus	0	
	.09 Getting On/Off Vehicle Other than School Bus	0	
	.11 Working in Roadway .12 Playing in Roadway	0	
	.13 Other Actions in Roadway	0	
	.14 Not in Roadway (Indicate)	0	
Code 2	: Traffic Control	Total	Demoentage
Code 3	.01 None	Total 1	Percentage 100%
	.02 Traffic Signal	0	
	.03 Stop Sign	0	
	.04 Flashing Light .05 Yield Sign	0 0	
	.06 Officer/Guard	0	
3	.07 No Passing Zone	0	
	08 RR Crossing Sign	0	
	.09 RR Crossing Flashing Light .10 RR Crossing Gate	0 0	
	.11 Stopped School Bus-Red Lights Flashing	0	
	.12 Construction Work Area	0	
	.13 Maintenance Work Area .14 Utility Work Area	0	
	.15 Police/Fire Emergency	0	
3	.16 School Zone	0	
3	.20 Other	0	
Code 4	: Light Conditions	Total	Percentage
4	.01 Daylight	1	100%
	.02 Dawn	0	
	.03 Dusk .04 Dark-Road Lighted	0 0	
	.05 Dark-Road Unlighted	0	
	-	_	
Code 5	: Roadway Character .01 Straight and Level	Total 1	Percentage 100%
	.02 Straight and Grade	0	
5	.03 Straight at Hillcrest	0	
	.04 Curve and Level	0	
	.05 Curve and Grade .06 Curve at Hillcrest	0 0	
5		0	
Code 6		Total	Percentage
	.01 Dry 02 Wet	1 0	100%
	.02 Wet .03 Muddy	0	
	.04 Snow/Ice	0	
	.05 Slush	0	
	.06 Flooded	0	

let:	neering, P.C. Village of Great Neck						Table No. AC
ect No.	M15-012						
et No.	W15-012						
	Middle N	eck Road and Clover	Drive				
	Detai	iled Accident Statistics	5				
Code 7:	Weather					Total	Percentage
	11 Clear					1	100%
	2 Cloudy					0	
)3 Rain					0	
7.0	14 Snow					0	
7.0	05 Sleet/Hail/Freezing Rain					0	
7.0	06 Fog/Smog/Smoke					0	
7.0	00 Other					0	
Code 19	Apparent Contributing Factors	Veh 1	Veh 2	Veh 3	Veh 4	Total	Percentage
	Human	Code 19	Code 20	Code 21	Code 22		
	2 Alcohol Involvement	0	0	0	0	0	
	3 Backing Unsafely	0	0	0	0	0	
	4 Driver Inattention/Distraction	0	0	0	0	0	
	5 Driver Inexperience	0	0	0	0	0	
	06 Drugs (illegal)	0	0	0	0	0	
	7 Failure to Yield Right-of-Way	0	0	0	0	0	
	8 Fell Asleep	0	0	0	0	0	
	9 Following Too Closely	1	0	0	0	1	100%
	0 Illness	0	0	0	0	0	
	1 Lost Consciousness	0	0	0	0	0	
	2 Passenger Distraction	0	0	0	0	0	
	3 Passing or Lane Usage Improper	0	0	0	0	0	
	4 Pedestrian /Bicyclist/Other Pedestrian Error/Confusion	0	0	0	0	0	
	5 Physical Disability	0	0	0	0	0	
	6 Prescription Medication	0	0	0	0	0	
	7 Traffic Control Disregarded	0	0	0	0	0	
	8 Turning Improperly	0	0	0	0	0	
	9 Unsafe Speed	0	0	0	0	0	
	20 Unsafe Lane Changing	0	0	0	0	0	
	1 Fatigued/Drowsy	0	0	0	0	0	
	2 Cell Phone (hand-held)	0	0	0	0	0	
	23 Cell Phone (hands-free)	0	0	0	0	0	
	4 Other Electronic Device	0	0	0	0	0	
	25 Outside Car Distraction	0	0	0	0	0	
	26 Reaction to Other Uninvolved Vehicle	0	0	0	0	0	
	27 Failure to Keep Right	0	0	0	0	0	
19.2	28 Aggressive Driving/Road Rage	0	0	0	0	0	
	Vehicular						
	1 Accelerator Defective	0	0	0	0	0	
	2 Brakes Defective	0	0	0	0	0	
	3 Headlights Defective	0	0	0	0	0	
	4 Other Lighting Defective	0	0	0	0	0	
	5 Oversized Vehicle	0	0	0	0	0	
	6 Steering Failure	0	0	0	0	0	
	7 Tire Failure/Inadequate	0	0	0	0	0	
	8 Tow Hitch Defective	0	0	0	0	0	
	9 Windshield Inadequate	0	0	0	0	0	
	0 Driverless/Runaway Vehicle	0	0	0	0	0	
19.6	0 Other Vehicular	0	0	0	0	0	
	Environmental			-	-	-	
	1 Animal's Action	0	0	0	0	0	
	2 Glare	0	0	0	0	0	
	3 Lane Marking Improper/Inadequate	0	0	0	0	0	
	4 Obstruction/Debris	0	0	0	0	0	
	5 Pavement Defective	0	0	0	0	0	
	6 Pavement Slippery	0	0	0	0	0	
	7 Shoulder Defective/Improper	0	0	0	0	0	
	8 Traffic Control Device Improper/Non-Working	0	0	0	0	0	
19.6	59 View Obstruction/Limited	0	0	0	0	0	
0 · **			X7 X 4			T ()	D
Code 23	Direction of Vehicle	Veh 1 Code 23	Veh 2 Code 24			Total	Percentage
	N. N	Code 23				~	100%
	01 North	1	1			2	100%
	2 North-East	0	0			0	
	3 East	0	0			0	
	4 South-East	0	0			0	
	05 South	0	0			0	
	06 South-West	0	0			0	
	07 West	0	0			0	
	08 North-West	0	0			0	

t:	ineering, P.C. Village of Great Neck					Table No. A
No.	M15-012					
		Middle Neck Road a Detailed Accide				
Code 25	: Pre-Accident Vehicle Action		Veh 1	Veh 2 Code 26	Total	Percentage
25.0	01 Going Straight Ahead		Code 25 1	1 Lode 26	2	100%
	02 Making Right Turn		0	0	0	
25.0	03 Making Left Turn		0	0	0	
	04 Making U Turn		0	0	0	
	05 Starting from Parking		0	0	0	
	06 Starting in Traffic 07 Slowing or Stopping		0	0 0	0 0	
	08 Stopped in Traffic		0	0	0	
	09 Entering Parked Position		0	0	0	
25.	10 Parked		0	0	0	
	11 Avoiding Object in Roadway		0	0	0	
	12 Changing Lanes		0	0	0	
	13 Passing		0	0 0	0 0	
	14 Merging 15 Backing		0	0	0	
	16 Making Right Turn on Red		0	0	0	
25.	17 Making Left Turn on Red		0	0	0	
	18 Police Pursuit		0	0	0	
25.2	20 Other		0	0	0	
Code 27	: Location of First Event				Total	Demoentage
	1 On Roadway				1 otal 1	Percentage 100%
	02 Off Roadway				0	
Code 28	: Type of Accident Collision With	First	Veh 1	Veh 2	Total	Percentage
		Event Code 28	Code 29	Code 30		
28.0	01 Other Motor Vehicle	1 Code 28	0 Code 29	0	1	100%
	02 Pedestrian	0	0	0	0	
28.0	03 Bicyclist	0	0	0	0	
	04 Animal	0	0	0	0	
	05 Railroad Train	0	0	0	0	
	06 In-Line Skater 07 Deer	0	0	0 0	0 0	
	08 Other Pedestrian	0	0	0	0	
	10 Other Object (Not Fixed) Collision with Fixed Object	0	0	0	0	
	11 Light Support /Utility Pole	0	0	0	0	
	12 Guide Rail - Not At End	0	0	0	0	
	13 Crash Cushion	0	0	0 0	0 0	
	14 Sign Post 15 Tree	0	0	0	0	
	16 Building/Wall	0	Ő	0	0	
28.	17 Curbing	0	0	0	0	
	18 Fence	0	0	0	0	
	19 Bridge Structure	0	0	0	0	
	20 Culvert/Head Wall 21 Median - Not At End	0	0 0	0 0	0 0	
	22 Snow Embankment	0	0	0	0	
	23 Earth Embankment/Rock Cut/Ditch	0	0	0	0	
28.	24 Fire Hydrant	0	0	0	0	
	25 Guide Rail - At End	0	0	0	0	
	26 Median - End	0	0	0	0	
	27 Barrier 30 Other Fixed Object No Collision	0 0	0 0	0 0	0 0	
28.3	31 Overturned	0	0	0	0	
	32 Fire/Explosion	0	0	0	0	
	33 Submersion	0	0	0	0	
	34 Ran Off Roadway Only 40 Other	0	0	0 0	0	
28.4	40 Other	0	0	U	0	

Hamlet: Village of Great Neck Project No. M15-012														
	of Great Neck 2													
			M	iddle Neck I NCDPW , Sunday, Wednesd	Middle Neck Road and Clover Drive NCDPW Accident Records Sunday, January 01, 2012 through Wednesday, April 01, 2015	over Drive ords 2012 2015								
To Average Numb	Number of Months: Number of Years: Total Number of Accidents: Average Number of Accidents per Year:	39.0 3.3 1.0 0.3	Total Number of Accidents in 2012: Total Number of Accidents in 2013: Total Number of Accidents in 2014: Total Number of Accidents in 2015 (January-March):	Total Nu Total Nu Total Nu of Accident	umber of Acc umber of Acc umber of Acc s in 2015 (Jan	Total Number of Accidents in 2012: Total Number of Accidents in 2013: Total Number of Accidents in 2014: Accidents in 2015 (January-March):	2: 1.0 3: 0.0 5: 0.0							
Accident No. Date 060-0948-2012 04/02/12	Hr Min 14 01	# of Veh # of Inj Fatal 2 0 0	1 0 0	3 4 1 1	5 6 1 1	7 19	NCPD Accident Codes 20 21 22 23 0 0 0 1	dent Codes 22 23 0 1	1	25 26 1 1	<u>27 28</u> 1 1	29 0	30 Dist 0 32	Dir N

- 1 of 1 -

ly ss ies	tal Percentage 4 67% 1 17% 0 1 17% 0 tal Percentage 5 83% 1 17% 0 tal Percentage 0 6 100% tal Percentage 0 0 0 0 0
Detailed Accident Statistics To In	4 67% 1 17% 0 1 17% 0 tal Percentage 5 83% 1 17% 0 0 0 6 100% tal Percentage 0 0 0 0 0 0 0 0 0 0
Detailed Accident Statistics To In	4 67% 1 17% 0 1 17% 0 tal Percentage 5 83% 1 17% 0 0 0 6 100% tal Percentage 0 0 0 0 0 0 0 0 0 0
Ta Ta I I I I I I I I I I I I I I I I I	4 67% 1 17% 0 1 17% 0 tal Percentage 5 83% 1 17% 0 0 0 6 100% tal Percentage 0 0 0 0 0 0 0 0 0 0
To ly is ies 1 To dent dent J gnal Marked Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway With Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	4 67% 1 17% 0 1 17% 0 tal Percentage 5 83% 1 17% 0 0 0 6 100% tal Percentage 0 0 0 0 0 0 0 0 0 0
To ly is ies 1 To dent dent J gnal Marked Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway With Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	4 67% 1 17% 0 1 17% 0 tal Percentage 5 83% 1 17% 0 0 0 6 100% tal Percentage 0 0 0 0 0 0 0 0 0 0
To Is ies ies In dent To dent To d gnal Marked Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway With Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	1 17% 0 1 17% 0 tal Percentage 5 83% 1 17% 0 tal Percentage 0 6 100% tal Percentage 0 0 0 0 0 0 0 0 0 0 0
To Is ies ies In dent To dent To d gnal Marked Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway With Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	0 1 17% 0 tal Percentage 5 83% 1 17% 0 tal Percentage 0 6 100% tal Percentage 0 6 100% tal Percentage 0
To ly iss ies Marked Crosswalk or Crosswalk or Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway Against Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	0 tal Percentage 5 83% 1 17% 0 tal Percentage 0 6 100% tal Percentage 0
ly ss ies To To dent To dent To gnal Marked Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway With Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	tal Percentage 5 83% 1 17% 0 tal Percentage 0 6 100% tal Percentage 0 6 100% tal Percentage 0 0 0 0 0 0 0 0 0
ly ss ies To To dent To dent To gnal Marked Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway With Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	5 83% 1 17% 0 tal Percentage 0 6 100% tal Percentage 0 6 100% tal Percentage 0 0 0 0 0 0 0 0 0 0 0
ly ss ies To To dent To dent To gnal Marked Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway With Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	5 83% 1 17% 0 tal Percentage 0 6 100% tal Percentage 0 6 100% tal Percentage 0 0 0 0 0 0 0 0 0 0 0
ss ies 1 Ta dent 1 1 1 1 1 1 1 1 1 1 1 1 1	1 17% 0 tal Percentage 0 6 100% tal Percentage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ies To dent To l gnal Marked Crosswalk or Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway Against Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	0 tal Percentage 0 0 6 100% tal Percentage 0
dent To gnal Marked Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway Against Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	0 0 6 100% tal Percentage 0
dent To gnal Marked Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway Against Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	0 0 6 100% tal Percentage 0
To gnal Marked Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway Against Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	0 6 100% tal Percentage 0
To gnal Marked Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway Against Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	tal Percentage 0 0 0 0 0 0 0 0 0 0 0 0 0
ıl gnal Marked Crosswalk or Crosswalk iing Alone Highway With Traffic iing Alone Highway Against Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	0 0 0 0 0 0 0 0 0
ıl gnal Marked Crosswalk or Crosswalk iing Alone Highway With Traffic iing Alone Highway Against Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	0 0 0 0 0 0 0 0 0
gnal Marked Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway Against Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	0 0 0 0 0 0 0
Marked Crosswalk or Crosswalk ing Alone Highway With Traffic ing Alone Highway Against Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	0 0 0 0 0 0
or Crosswalk ing Alone Highway With Traffic ing Alone Highway Against Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	0 0 0 0 0
ing Alone Highway Against Traffic ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	0 0 0
ont of/Behind Parked Vehicle ed School Bus cle Other than School Bus	0 0
ed School Bus cle Other than School Bus	0
cle Other than School Bus	
	0
	0
dway	0
icate)	0
Та	tal Percentage
	3 50%
	3 50%
	0
	0 0
	0
	0
	0
g Light	0
Pad Lights Electring	0 0
rea	0
Irea	0
	0
cy	0
	0 0
	0
To	tal Percentage
	5 83%
	0
	1 17% 0
1	0
To	0
	6 100% 0
	0
	0
	0
	0
ondition To	tal Percentage
in the second seco	5 83%
	1 17%
	0
	0
	0 0
R Arr cy	ed Lights Flashing rea rea

yan Engn	neering, P.C. Village of Great Neck						Table No. A
: No.	M15-012						
		k Road and Allenwoo					
	Detail	ed Accident Statistics	5				
~							
Code 7:	Weather 1 Clear					Total 3	Percentage 50%
	2 Cloudy					3	50%
	3 Rain					0	
	4 Snow					0	
7.05	5 Sleet/Hail/Freezing Rain					0	
7.06	5 Fog/Smog/Smoke					0	
7.00) Other					0	
Code 19:	Apparent Contributing Factors	Veh 1	Veh 2	Veh 3	Veh 4	Total	Percentage
0040 251	Human	Code 19	Code 20	Code 21	Code 22	1000	i ci contage
19.02	2 Alcohol Involvement	0	0	0	0	0	
	3 Backing Unsafely	1	0	1	0	2	29%
	4 Driver Inattention/Distraction	0	0	0	0	0	
19.05	5 Driver Inexperience	0	0	0	0	0	
19.06	5 Drugs (illegal)	0	0	0	0	0	
	7 Failure to Yield Right-of-Way	0	0	0	0	0	
	8 Fell Asleep	0	0	0	0	0	
	9 Following Too Closely	2	0	0	0	2	29%
) Illness	0	0	0	0	0	
	Lost Consciousness	0	0	0	0	0	
	2 Passenger Distraction	0	0	0	0	0	
	3 Passing or Lane Usage Improper	0	0	0	0	0	
	4 Pedestrian /Bicyclist/Other Pedestrian Error/Confusion	0	0	0	0	0	
	5 Physical Disability	0	0	0	0	0	
	5 Prescription Medication	0	0	0	0	0	
	7 Traffic Control Disregarded	0	0	0	0	0	
	3 Turning Improperly 9 Unsafe Speed	1	0	0	0 0	1	14%
) Unsafe Lane Changing	0	0	0	0	0	14%
	1 Fatigued/Drowsy	1 0	0	0	0	0	14%
	2 Cell Phone (hand-held)	0	0	0	0	0	
	3 Cell Phone (hands-free)	0	0	0	0	0	
	4 Other Electronic Device	0	0	0	0	0	
	5 Outside Car Distraction	0	0	0	0	0	
	5 Reaction to Other Uninvolved Vehicle	0	0	0	0	0	
	7 Failure to Keep Right	0	0	0	0	0	
	8 Aggressive Driving/Road Rage	0	0	0	0	0	
	Vehicular						
19.41	Accelerator Defective	0	0	0	0	0	
19.42	2 Brakes Defective	0	0	0	0	0	
	3 Headlights Defective	0	0	0	0	0	
	4 Other Lighting Defective	0	0	0	0	0	
	5 Oversized Vehicle	1	0	0	0	1	14%
	5 Steering Failure	0	0	0	0	0	
	7 Tire Failure/Inadequate	0	0	0	0	0	
	8 Tow Hitch Defective	0	0	0	0	0	
	9 Windshield Inadequate	0	0	0	0	0	
) Driverless/Runaway Vehicle	0	0	0	0	0	
19.60	Other Vehicular	0	0	0	0	0	
10 41	Environmental 1 Animal's Action	0	0	0	0	0	
	2 Glare	0	0	0	0	0	
	3 Lane Marking Improper/Inadequate	0	0	0	0	0	
	4 Obstruction/Debris	0	0	0	0	0	
	5 Pavement Defective	0	0	0	0	0	
	5 Pavement Slippery	0	0	0	0	0	
	7 Shoulder Defective/Improper	0	0	0	0	0	
	8 Traffic Control Device Improper/Non-Working	0	0	0	Ő	0	
	9 View Obstruction/Limited	0	0	0	0	0	
						-	-
Code 23:	Direction of Vehicle	Veh 1 Code 23	Veh 2 Code 24			Total	Percentage
22.01	I. Nowth	Code 23				-	450/
	1 North 2 North Fast	3	2			5	45%
	2 North-East 3 East	1	0			1	9%
	4 South-East	0	0			0	
	5 South	02	0			0 5	45%
	5 South-West	0					
23.06	5 South-West 7 West	0	0 0			0 0	

Code 25: 25.01 25.02 25.03 25.04 25.05 25.06 25.07 25.08	M15-012 Pre-Accident Vehicle Action Going Straight Ahead Making Right Turn Making Left Turn Making U Turn Starting from Parking Starting in Traffic Slowing or Stopping	Middle Neck Road an Detailed Accide	Veh 1 Code 25 2	Veh 2		
25.01 25.02 25.03 25.04 25.05 25.06 25.07 25.08 25.09	Going Straight Ahead Making Right Turn Making Left Turn Making U Turn Starting from Parking Starting in Traffic		Code 25 2			
25.02 25.03 25.04 25.05 25.06 25.07 25.08 25.09	Making Right Turn Making Left Turn Making U Turn Starting from Parking Starting in Traffic		2	Code 26	Total	Percentage
25.03 25.04 25.05 25.06 25.07 25.08 25.08	Making Left Turn Making U Turn Starting from Parking Starting in Traffic			1	3	27%
25.04 25.05 25.06 25.07 25.08 25.09	Making U Turn Starting from Parking Starting in Traffic		1	0	1	9%
25.05 25.06 25.07 25.08 25.09	Starting from Parking Starting in Traffic		0	0 0	0	
25.06 25.07 25.08 25.09	Starting in Traffic		0	0	0	
25.08 25.09	Slowing or Stopping		0	0	0	
25.09			0	1	1	9%
	Stopped in Traffic Entering Parked Position		0	1 0	1	9% 9%
			0	1	1	9%
25.11	Avoiding Object in Roadway		0	0	0	
	Changing Lanes		1	0	1	9%
	Passing Merging		0	0 0	0 0	
	Backing		1	1	2	18%
25.16	Making Right Turn on Red		0	0	0	
	Making Left Turn on Red		0	0	0	
25.18	Police Pursuit		0 0	0 0	0 0	
23.20	Oulei		0	0	0	
	Location of First Event				Total	Percentage
	On Roadway				5	83%
27.02	Off Roadway				1	17%
Code 28:	Type of Accident Collision With	First Event	Veh 1	Veh 2	Total	Percentage
28.01	Other Motor Vehicle	Code 28 5	Code 29 0	Code 30	6	960/
	Pedestrian	5 0	0	0	0	86%
	Bicyclist	0	0	0	0	
	Animal	0	0	0	0	
	Railroad Train	0	0 0	0 0	0	
28.07	In-Line Skater Deer	0	0	0	0	
	Other Pedestrian	0	0	0	0	
	Other Object (Not Fixed) Collision with Fixed Object	0	0	0	0	
	Light Support /Utility Pole Guide Rail - Not At End	0	0	0 0	0 0	
	Crash Cushion	0	0	0	0	
	Sign Post	0	0	0	0	
28.15		0	0	0	0	
	Building/Wall Curbing	1	0 0	0 0	1 0	14%
28.17	e	0	0	0	0	
	Bridge Structure	0	ů 0	0	0	
	Culvert/Head Wall	0	0	0	0	
	Median - Not At End	0	0	0	0	
	Snow Embankment Earth Embankment/Rock Cut/Ditch	0 0	0	0 0	0 0	
	Fire Hydrant	0	0	0	0	
28.25	Guide Rail - At End	0	0	0	0	
	Median - End	0	0	0	0	
28.30	Barrier Other Fixed Object No Collision	0 0	0 0	0 0	0 0	
	Overturned	0	0	0	0	
	Fire/Explosion	0	0	0	0	
	Submersion Ran Off Roadway Only	0 0	0 0	0	0 0	
28.34 28.40		0	0	0 0	0	
20.10		0	5	~	0	

EXISTING TRAFFIC VOLUMES

Turning movement counts were collected during the weekday morning and evening peak hours at the study intersections. Counts were also collected on Saturday afternoon. The peak hours of commuter traffic on Middle Neck Road are consistent with the peak hours studied. The peak hour turning movement volumes are provided within the Technical Appendix. The turning movement data was collected during the following time periods:

•	In the morning from	7:00 a.m. to 9:00 a.m.
•	In the evening from	4:00 p.m. to 6:00 p.m.
•	On Saturday from	8:00 a.m. to 2:00 p.m.

Counts were collected on Thursday, March 19th and Saturday March 28, 2015. The following is a list of the study intersections included in our analysis of the proposed project.

- 1. Middle Neck Road and Old Mill Road/Piccadilly Road
- 2. Middle Neck Road and the North Site Access
- 3. Middle Neck Road and Wooleys Lane
- 4. Middle Neck Road and the Millbrook Court
- 5. Middle Neck Road and the South Site Access
- 6. Middle Neck Road and Clover Drive
- 7. Middle Neck Road and Allenwood Road

A majority of the turning movement counts were collected using Miovision Scout Video Collection Units. Electronic Jamar hand-held Traffic Data Collectors were used to collect counts at the balance of the study intersections. The turning movement count data was processed using PETRAPro software.

The results of these traffic counts were analyzed to determine the distinct hour during each of the time periods surveyed when traffic experiences its highest level referred to as the "peak hour." The peak hour volume is used in our analysis to model the critical demand during each time period. The percent of heavy vehicles was calculated for each intersection during the peak hours.

PEDESTRIAN VOLUMES

Pedestrian counts were collected at each of the study intersections. These counts represent the number of pedestrians crossing the street. Pedestrian counts are collected in one of four categories:

- Ped 1. Pedestrians travelling east or west crossing traffic on the north side of the intersection;
- Ped 2. Pedestrians travelling north or south crossing traffic on the east side of the intersection;
- Ped 3. Pedestrians travelling east or west crossing traffic on the south side of the intersection; and
- Ped 4. Pedestrians travelling north or south crossing traffic on the west side of the intersection;

ADJUSTED TRAFFIC VOLUME FLOW RATE

The Highway Capacity Analysis uses the adjusted flow rate based on the peak hour volume and the peak hour factor at each location. The peak hour volume is divided by the peak hour factor to produce the critical 15 minute demand projected over the entire one hour period. The results of this analysis provide the level of service experienced during the busiest 15 minute period within the peak hour.

PERCENT HEAVY VEHICLE ADJUSTED

The turning movement counts have been adjusted to account for buses and trucks. A passenger car equivalent of 2.0 was applied to each bus and truck observed during the turning movement counts at the study intersections.

PEDESTRIAN ANALYSIS

The Highway Capacity Analysis prepared for the Saturday peak hour at the study intersections reflects the number of pedestrians crossing each approach. The volume of pedestrians in the area on Saturday is significantly higher than on the weekdays. The analysis groups pedestrian volumes with respect to specific movements. Turn movements at unsignalized intersections will conflict with pedestrians crossing in front of the vehicle as well as though crossing the approach the vehicle is turning onto. At signalized intersections though movements should not conflict with pedestrians would be crossing against traffic. The pedestrian counts are included in the technical appendix.

NO BUILD CONDITIONS

AMBIENT TRAFFIC GROWTH

The volume of traffic using the roadway network changes each year based on population growth and development. An ambient growth rate is used to determine the future base traffic volumes. The ambient growth rate takes into account developments that will increase the volume of traffic at the study intersections prior to the completion of this project.

The subject property is located within Census Track 36059-3003.00. The following table provides census data for the area surrounding the subject site. The population data provides information on population changes that have occurred in the area over the past 20 years. This historical data is used to calculate the anticipated future growth rate.

Census Track	Area	Population	¹ Population Change		
	(in square- miles)	2010	1990-2000	2000-2010	2010-2015
36059.3001.00	3.3418	5,152	0.50	0.15	0.04
36059.3003.00	0.6361	4,547	1.40	0.43	0.22
36059.3004.00	0.7214	5,199	0.30	0.02	0.05
36059.3005.00	1.2362	5,377	-0.20	-0.01	0.03
36059.3006.00	1.0803	6,503	0.10	0.09	0.10
Total/Average	7.0158	26,778	0.42	0.14	0.09

The existing traffic volumes at the study intersections were increased by a growth rate factor of 1.0 % compounded yearly. This rate was applied based on conversations with the Nassau County Department of Public Works Traffic Engineering Department. This rate exceeds the standard ambient growth forecasted for this area. The growth rate is applied to the existing volumes to generate the ambient no build traffic volumes. For the purposes of this analysis, the future no build and build conditions are anticipated to occur in 2020.

¹ Source: US Census/ESRI Demographic Update Methodology: 2010/2015

OTHER PLANNED PROJECTS

The following provides a list of projects that are currently being contemplated and may be developed in proximity to the site. The traffic generated by these projects is included in the analysis of the future no build condition for this project.

- 1. 100 Clover Drive; and
- 2. The Rose Apartment Complex

These projects are in close proximity to the subject site and are considered in addition to the ambient background growth rate. The ambient growth rate is used to incorporate traffic from other planned projects located further away from the subject site which may still influence the future traffic volumes at the study intersections.

FUTURE BUILD CONDITIONS

TRIP GENERATION

The development of the subject site will generate a certain number of vehicle trips throughout the day. The volume of trips generated by the site was calculated using the standard calculations compiled by the Institute of Transportation Engineers (ITE) in the 9th Edition <u>Trip Generation</u>, 2012. This is often referred to as the Trip Generation Manual and is considered the industry standard for traffic engineering studies.

The trip generation of the development was calculated using the ITE Land Use Code 220. The independent variable used in the calculation is the number of "dwelling units". This land use code represents Apartments. The volumes below represent the peak number of trips generated during a one hour time period.

ITE Land Use 220 67 Apartment Units – Net Change

Proposed	AM Peak	PM Peak	Saturday Peak
Entering	7	27	17
Exiting	27	<u> 15 </u>	17
Total	34	42	34

ITE Land Use 220 186 Apartment Units – Overall Proposed Development

Proposed	AM Peak	PM Peak	Saturday Peak
Entering	19	75	48
Exiting	<u> 76 </u>	40	48
Total	95	115	86

The existing and no building highway capacity analysis utilize actual turning movement counts at the site driveways. The build highway capacity analysis at the site driveways utilizes the trip generation based on the overall 186 proposed units.

SITE ACCESS

The proposed site will maintain the existing site driveways. The site has one driveway to the north, one in the center of the property and one to the south. The central driveway is known as Millbrook Court.

The north and south driveways will be reconfigured. The south driveway will allow entrance only traffic flow from Middle Neck Road. The north driveway will permit exit only traffic flow onto Middle Neck Road. The center driveway/Millbrook Court will maintain two way traffic flow.

The site access design and parking configuration is illustrated on the site plan set prepared by Newman Design Architects, PLLC. The project architect has also prepared plans showing fire truck access routes to various locations on site. The proposed development is subject to the review and approval of the Village of Great Neck, the local fire department and the Nassau County Fire Marshall.

MODAL SPLIT

According to the Census Bureau's Population Estimates Program 22.0% of commuters in the Village of Great Neck used public transportation. The overall 186 apartment units will generate a maximum of 76 additional trips (in any one direction trips in the opposite direction would be added to other buses and/or trains). Twenty two percent of these trips represent 16 to 17 commuters using public transportation during the peak hours. These numbers include transit trips generated by the existing 119 apartment units. The site is located along the N58 bus line which goes to the Great Neck train station. The bus passes the site numerous times during the morning and evening peak hours. The proposed project is not anticipated to impact the existing bus or train capacity.

PEDESTRIAN ACTIVITY

Based on the Census Bureau's Population Estimates Program, 5.0% of commuters in the Village of Great Neck walk to work. The site is anticipated to generate approximately 2 to 3 pedestrian trip during the commuter peak hours. The volume of pedestrian trips generated by the subject site is not anticipated to impact the existing level of service on the sidewalks or crosswalks in the surrounding community.

TRIP DISTRIBUTION

Trips generated by the development of the subject site are distributed throughout the roadway network and assigned to the study intersections. The percent distribution is applied to the trip generation to establish the number of trips assigned to specific turning movements at each of the study intersections. One hundred percent of the trip generation is distributed and assigned to the site access.

A portion of the total trip generation is distributed and assigned to each of the other study intersections. The volume of trips assigned to each intersection is based on the percentage of vehicles that are anticipated to use these intersections while traveling to and from the site. The distribution at the site driveway is based on the local roadway network.

The existing site driveway configuration will change as part of this redevelopment. The northern driveway will be converted to an exit only. The southern driveway will be converted to an entrance only. These one-way driveways are connected via an aisle or roadway wrapping around the western edge of the property. The central driveway, also known as, Millbrook Court will remain two way. Millbrook Court will however service approximately 50 percent less on-site parking spaces upon completion of the project.

The existing traffic generated by the site was redistributed to account for these changes. The existing traffic volumes at Millbrook Court were decreased by 50%. These trips were then assigned to the driveways to the north and south. The arrival and departure patterns are based on the existing driveway utilization during the peak hours.

PARKING STUDY

Our office conducted a parking study of the subject site and surrounding area. Parking observations were conducted on Tuesday, May 12, 2015 between the hours of 10:00 pm and 11:30 pm. These hours reflect peak demand associated with residential uses. In addition to the parking provided on the subject site parking counts were conducted on Middle Neck Road from Old Mill Road to Clover Drive (on the west) and from Piccadilly Road to Allenwood Road (on the east).

The complex currently provides 62 semi private garages. These potential parking spaces are not included in the available parking shown on the parking tables provided in the technical appendix.

The results of our study show that limited on street parking is available in proximity to the subject site in the overnight hours. A minimum of 18 parking spaces in total were available on site in the north and south parking lots. The parking spaces along Millbrook Court were found to be 100% occupied during our observations.

PARKING GENERATION

The development of the subject site will generate a certain number of parked vehicles. The number of parked vehicles generated by the proposed development was based on the standard calculations compiled by the Institute of Transportation Engineers (ITE) in the 4th Edition Parking Generation, 2010. This is often referred to as the Parking Generation Manual and is considered the industry standard for traffic engineering studies.

The parking generation of the proposed development was calculated using the ITE Land Use Code 221. The independent variable used in the calculation is the "dwelling units". This land use code represents Low/Mid-Rise Apartments. The ITE defines Low/Mid-Rise Apartments as those with 4 or fewer floors. High-Rise Apartments are defined, by ITE, as having five or more floors.

Based on the ITE parking generation data, the existing complex consisting of a total of 119 apartment units is anticipated to generate 147 parked vehicles during peak demand. Of these vehicles approximately 13 would need to park offsite.

Based on the ITE parking generation data, the proposed complex consisting of a total of 186 apartment units is anticipated to generate 230 parked vehicles during peak demand. Peak parking demand for residential developments occurs during the overnight hours between 10:00 pm and 5:00 am.

The site plans prepared, by NDA Architects, for the proposed project provides for a total of 314 parking spaces.

The existing apartment complex provides approximately 1.13 parking spaces for each apartment unit (134 parking spaces/119 units). Upon completion of the project the site will provide 1.69 parking spaces per unit (314 parking spaces/186 units). The proposed site provides ample parking to accommodate the anticipated demand. The redevelopment of the site is anticipated to decrease on street parking demand in proximity to the site. Based on the statistics compiled by the ITE, the proposed site will have a peak occupancy rate of approximately 75%.

According to the Census Bureau's Population Estimates Program 87.5% of households in the Village of Great Neck have 2 or fewer vehicles and 47.5% have 1 or no vehicles. The average household has 1.57 vehicles. Vehicle ownership is a primary component of residential parking demand.

Based on the ITE and Census data the proposed project supplies ample parking to accommodate the anticipated demand.

TANDEM PARKING

Twenty-two of the 314 on-site parking spaces provided will be in tandem with another parking space. Tandem parking is subject to the review and approval of the Board of Trustees as per the following section of the Village Code:

Section 575-155 Parking in residence districts B (1)(d) Tandem parking for residential units, with the condition that all parking spaces that are in tandem with each other shall be assigned to the same unit, shall be subject to the approval of the Board of Trustees.

The tandem spaces will be located within the proposed parking garage associated with the north building. The proposed north building provides a total of 59 units. Twenty-two of these units will be assigned tandem parking spaces.

Tandem parking has been incorporated into other projects in the Village such as the Versailles apartment complex located directly to the north of the subject site. The tandem parking utilized by the Versailles apartment complex received approval by Board of Trustees.

CONSTRUCTION

A. Pappajohn Company is the general contractor for this project. Site Logistics Plans have been prepared detailing the various phases of construction. These plans and information provided by the developer are the basis of the information provided within this section of the report.

PROJECT SCHEDULE

The construction of the project is anticipated to be completed within 23 months (approximately 2 years). The project will be completed in two phases. Each phase of the project will take approximately one year.

117 units 137 parking space	Existing Conditions:	119 units	134 parking spaces
-------------------------------	----------------------	-----------	--------------------

Phase No. 1

Demolition of 6 existing units Construction of rear drive aisle Excavation of Millbrook Court Construction of South and West Parking Garages Construction of 8 surface parking spaces Construction of 42 new units (south and west building) Replacement of Millbrook Court

Phase No. 1 Conditions: 155 units 252 parking spaces

Phase No. 2

Demolition of 28 existing units Construction of North Parking Garage Construction of 6 surface parking spaces Construction of 59 new units (north building)

Phase No. 2 Conditions:186 units314 parking spaces

LEVEL OF SERVICE TABLES

The following provides the results of the highway capacity analysis prepared for this project in terms of level of service and delay experienced at the study intersections, under the Existing, No Build and Build Conditions. The delay provided for signalized intersections represents the overall average intersection delay in seconds. The delay provided for stop controlled intersections represents the control delay on the critical approach in seconds. The technical appendix includes the highway capacity analysis output files detailing the level of service and delay at each of the study intersections.

The "Existing Condition" provides an analysis of the critical 15 minute period during the peak hour observed at the study intersections. The "No Build Condition" takes into account the background traffic growth and other planned projects that will increase the traffic volumes at the study intersections. To determine the future volume of traffic on the roadway network upon completion of the proposed project; the "Build Condition" considers the trip generation, trip distribution and no build traffic volumes.

The Build analysis evaluates the cumulative impacts of the ambient background growth rate, the other planned projects in proximity to the subject site and the trips generated by the proposed development.

M15-012												
Intersection					Old Mill	Road at !	Aiddle Ne	ck Road				
Control Type							Signal	on noau				
Time Period							ak Hour			Southbound Left Through Right 0.41 0.45 7.2 7.8 A A 7.5 A A A 7.5 A A 0.48 7.5 A A 0.48 7.5 A 7.5 A 7.5 A 7.5 A 7.5 A 7.5 A 7.8 A 7.8 A 7.8 A A 0.48 7.6 0.48 7.9 A A A 7.9 A		
	1									Left Through Right 0.41 0.45 7.2 7.8 A A 7.5 A A A 7.5 A Southbound Right 0.44 0.48 7.5 8.2 A A 7.8 A A A 7.9 A A A 7.9 A A A 7.9 A		
Condition		_				EXIS	TING				_	
Direction Movement	Left	Eastbound	Dight	Left	Westbound Through	Dight	Left	Northbound Through		Loft	Southbound	Diabt
wovement	Leπ	Through	Right	Len	Inrough	Right	Lett	Inrougn	Right	Len	Inrougn	Right
V/C Ratio	0.23		0.61		0.37		0.31	0.35	0.35	0.41		0.45
Delay (sec)	13.4		15.9		14.3		11.6	6.7	6.6			
LOS Approach Delay (sec)	В	 15.0	В		В 14.3		В	A 7.5	А	A		A
Approach LOS		15.0 B			14.3 B			7.5 A				
		_			-							
Overall Delay (sec)						0	.1					
Overall LOS							. I А					
						,						
Condition												
Condition Direction		Eastbound			Westbound	NUE	UILD	Northbound		r –	Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left		
1//2 D-#-		_	0.00		0.00		0.01	0.07	0.07	0.11		0.40
V/C Ratio Delay (sec)	0.24 13.3		0.63 16.0		0.39 14.5		0.34 12.9	0.37 6.9	0.37 6.9			
LOS	В		B		B		B	0.5 A	0.5 A			
Approach Delay (sec)		15.0			14.5			7.9				
Approach LOS		В			В			Α			A	
				1						1		
Overall Delay (sec)							.4					
Overall LOS							4					
Condition		=				BU	ILD					
Direction Movement	Left	Eastbound Through	Right	Left	Westbound Through	Right	Left	Northbound Through	Right	Loft		
Wovernent	Leit	mough	Night	Leit	mough	Ngn	Leit	mough	Ngn	Leit	mough	Ngm
V/C Ratio	0.24		0.63		0.39		0.34	0.37	0.38			
Delay (sec)	13.3		16.0		14.5		13.0	7.0	6.9			
LOS Approach Delay (sec)	В	 15.1	В		В 14.5		В	A 8.0	A	A		A
Approach LOS		B			В			A				
Overall Delay (sec)						0	.5					
Overall LOS							A.					
					NO 51	D TO D''		ADIOON				
Qualities					NO BUII Westbound	U 10 BU	LD COMP	PARISON Northbound		r	Southbound	
Condition		Fastbourd					Left	Through	Right	Left		
Direction	Left	Eastbound Through	Right	Left	Through	Right	LOIL					Ť
Direction Movement		Through			Through							
Direction Movement V/C Ratio	0.00	Through	0.00		Through 0.00		0.00	0.00	0.01			
Direction Movement V/C Ratio Delay (sec)		Through			Through					0.00 0.1		0.00 0.0
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)	0.00 0.0	Through 	0.00 0.0		Through 0.00 0.0		0.00 0.1	0.00 0.1	0.01 0.0	0.1		0.0
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)	0.00 0.0	Through 	0.00 0.0		Through 0.00 0.0 		0.00 0.1	0.00 0.1 	0.01 0.0	0.1		0.0
Direction Movement V/C Ratio Delay (sec) LOS	0.00 0.0	Through 0.1	0.00 0.0		Through 0.00 0.0 0.0		0.00 0.1	0.00 0.1 0.1	0.01 0.0	0.1	 0.1	0.0
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)	0.00 0.0	Through 0.1	0.00 0.0		Through 0.00 0.0 0.0		0.00 0.1	0.00 0.1 0.1	0.01 0.0	0.1	 0.1	0.0

Intersection								Neck Road				
Control Type				S	top Signs p	osted on S	Side Stree	et Approach	es			
Time Period						AM Pea	ak Hour					
Condition						EXIS	TING					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.05					0.00					
Delay (sec)		12.9					0.0					
LOS		B					A					
Approach Delay (sec)		12.9						0.0				
Approach LOS		B						A				
Overall Delay (sec) Overall LOS							.2 A			Į		
Condition						NO E	BUILD					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
		5	J		J	J		<u>y</u>	5			J
V/C Ratio		0.05					0.00					
Delay (sec)		13.4					0.0					
LOS		В					A					
Approach Delay (sec)		13.4						0.0				
Approach LOS		В						A				
Overall Delay (sec) Overall LOS							.2 A					
Condition						BU	ILD					
Direction		Eastbound			Westbound			Northbound		1	Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.21										
Delay (sec)		17.9										
LOS		С										
Approach Delay (sec)	1	17.9										
Approach LOS		С										
Overall Delay (sec) Overall LOS							.0 A			•		
Condition					NO BUIL	D TO BU	ILD COMF	PARISON				
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right

Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS		0.17 4.5 Impact 4.5 Impact			 			 			 	
Overall Delay (sec) Overall LOS				I			.8 			•		

Note: Build condition on the northbound approach improves as the driveway will become exit only.

LOS Table 2A

Intersection Control Type					Woolev	s Lane at	Middle Ne	ck Road				
							Signal					
Time Period							ak Hour					
O an althing						EVIC	TINO					
Condition Direction		Eastbound		r –	Westbound		TING	Northbound	1		Southbour	d
Novement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio					0.24			0.34			0.59	
Delay (sec)					20.2			4.4			6.5	
LOS					С			Α			Α	
Approach Delay (sec) Approach LOS					20.2 C			4.4 A			6.5 A	
					U			~			~	
							_					
Overall Delay (sec) Overall LOS							.7 A					
							·					
Condition						NOF	UILD					
Direction		Eastbound		r –	Westbound			Northbound	1		Southbour	d
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
//C Ratio					0.25			0.36			0.63	
Delay (sec)					20.2			4.5			7.0	
LOS					C			A			A	
Approach Delay (sec) Approach LOS					20.2 C			4.5 A			7.0 A	
					-							
Overall Delay (sec)						7	.0					
Overall LOS							A					
Condition	-					BU	ILD					
	Loft	Eastbound	Pight	Loft	Westbound			Northbound		Loft	Southbour	
Movement	Left	Eastbound Through	Right	Left	Westbound Through	Right	Left	Northbound Through	l Right	Left	Southbour Through	d Right
Movement //C Ratio		Through 			Through 0.25	Right	Left	Through 0.36	Right		Through 0.65	Right
//C Ratio Delay (sec)		Through 			Through 0.25 19.7	Right 	Left 	Through 0.36 4.1	Right 		Through 0.65 5.4	Right
Movement //C Ratio Delay (sec) .OS Approach Delay (sec)		Through 			Through 0.25 19.7 B 20.2	Right	Left	Through 0.36 4.1 A 4.5	Right		Through 0.65 5.4 A 7.2	Right
Movement //C Ratio Delay (sec) _OS Approach Delay (sec)		Through 			Through 0.25 19.7 B	Right 	Left 	Through 0.36 4.1 A	Right 		Through 0.65 5.4 A	Right
Direction Movement //C Ratio Delay (sec) OS Approach Delay (sec) Approach LOS		Through 			Through 0.25 19.7 B 20.2	Right 	Left 	Through 0.36 4.1 A 4.5	Right 		Through 0.65 5.4 A 7.2	Right
Movement //C Ratio Delay (sec) _OS Approach Delay (sec) Approach LOS 		Through 			Through 0.25 19.7 B 20.2	Right 7	Left 	Through 0.36 4.1 A 4.5	Right 		Through 0.65 5.4 A 7.2	Right
Movement //C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS		Through 			Through 0.25 19.7 B 20.2	Right 7	Left 	Through 0.36 4.1 A 4.5	Right 		Through 0.65 5.4 A 7.2	Right
Movement //C Ratio Delay (sec) .OS Approach Delay (sec) Approach LOS Dverall Delay (sec)		Through 			Through 0.25 19.7 B 20.2	Right 7	Left 	Through 0.36 4.1 A 4.5	Right 		Through 0.65 5.4 A 7.2	Right
Movement //C Ratio Delay (sec) .OS Approach Delay (sec) Approach LOS Dverall Delay (sec) Dverall LOS		Through 			Through 0.25 19.7 B 20.2 C	Right 7	Left 	Through 0.36 4.1 A 4.5 A	Right 		Through 0.65 5.4 A 7.2	Right
Avement //C Ratio Delay (sec) .OS Approach Delay (sec) Approach LOS Dverall Delay (sec) Dverall LOS		Through 			Through 0.25 19.7 B 20.2 C	Right 7 7 4	Left 	Through 0.36 4.1 A 4.5 A PARISON	Right 		Through 0.65 5.4 A 7.2 A	Right
Movement //C Ratio Delay (sec) .OS Approach Delay (sec) Approach LOS Dverall Delay (sec) Dverall LOS Condition Direction		Through 			Through 0.25 19.7 B 20.2 C	Right 7 7 4	Left 	Through 0.36 4.1 A 4.5 A	Right 		Through 0.65 5.4 A 7.2	Right
Movement //C Ratio Delay (sec) .OS Approach Delay (sec) Approach LOS Dverall Delay (sec) Dverall LOS Condition Direction Movement	 	Through Eastbound Through	Right	 Left	Through 0.25 19.7 B 20.2 C C NO BUII Westbound Through	Right 7 	Left A ILD COMI	Through 0.36 4.1 A 4.5 A A PARISON Northbound Through	Right i Right	 Left	Through 0.65 5.4 A 7.2 A Southbour	Right d Right
Movement //C Ratio Delay (sec) .OS Approach Delay (sec) Approach LOS Dverall Delay (sec) Dverall LOS Condition Direction Movement //C Ratio		Through Eastbound			Through 0.25 19.7 B 20.2 C C NO BUII Westbound	Right 7	.1 A Left 	Through 0.36 4.1 A 4.5 A A A A A A A A A Northbound	Right		Through 0.65 5.4 A 7.2 A Southbour	Right
Movement //C Ratio Delay (sec) .OS Approach Delay (sec) Approach LOS Dverall Delay (sec) Dverall LOS Condition Direction Movement //C Ratio Delay (sec) .OS		Eastbound Through	 Right		NO BUI Westbound Through 0.25 19.7 B 20.2 C	Right 7 7 7 7 7 	Left A ILD COMI Left 	Through 0.36 4.1 A 4.5 A PARISON Northbound Through 0.00 -0.4 	Right Right 	 Left	Through 0.65 5.4 A 7.2 A Southbour Through 0.02 -1.6 	Right d Right
Avement //C Ratio Delay (sec) .OS Approach Delay (sec) Approach LOS Dverall Delay (sec) Dverall LOS Condition Direction //C Ratio Delay (sec) .OS Approach Delay (sec)		Through Eastbound Through 	 Right	 Left 	NO BUII Westbound Through 0.25 19.7 B 20.2 C	Right 7 7 7 7 	Left .1 A Left Left 	Through 0.36 4.1 A 4.5 A PARISON Northbound Through 0.00 -0.4 0.0	Right	 Left	Through 0.65 5.4 A 7.2 A Southbour Through 0.02 -1.6 0.2	Right d Right
Avement //C Ratio Delay (sec) .OS Approach Delay (sec) Approach LOS Dverall Delay (sec) Dverall LOS Condition Direction //C Ratio Delay (sec) .OS Approach Delay (sec)		Eastbound Through	 Right	 Left 	NO BUI Westbound Through 0.25 19.7 B 20.2 C	Right 7 7 7 7 	Left .1 A Left Left 	Through 0.36 4.1 A 4.5 A PARISON Northbound Through 0.00 -0.4 	Right	 Left	Through 0.65 5.4 A 7.2 A Southbour Through 0.02 -1.6 	Right d Right
Movement //C Ratio Delay (sec) _OS Approach Delay (sec) Approach LOS 		Through Eastbound Through 	 Right	 Left 	NO BUII Westbound Through 0.25 19.7 B 20.2 C	Right 7 	Left .1 A 	Through 0.36 4.1 A 4.5 A PARISON Northbound Through 0.00 -0.4 0.0	Right	 Left	Through 0.65 5.4 A 7.2 A Southbour Through 0.02 -1.6 0.2	Right d Right

Intersection						k Court at						
Control Type				S	top Signs p			et Approach	es			
Time Period						AM Pe	ak Hour					
Condition	-						TING					
Condition Direction	-	Eastbound			Westbound		IING	Northbound	1		Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
				2011								
V/C Ratio		0.07					0.01					
Delay (sec)		17.6					10.0					
LOS		С					A					
Approach Delay (sec)		17.6						0.2				
Approach LOS		С						A				
Overall Delay (sec) Overall LOS							.3					
Overall LOS							4					
A 1111												
Condition Direction		Eastbound			Westbound	NO E	UILD	Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
	Lon	mough	rugin	LOIL	mough	ragin	Lon	mough	right	Lon	mough	ragin
V/C Ratio		0.07					0.01					
Delay (sec)		18.5					10.2					
LOS		С					В					
Approach Delay (sec)		18.5						0.1				
Approach LOS		С						A				
							_					
Overall Delay (sec) Overall LOS							.3 A					
Overall LOS							4					
Condition Direction		Eastbound			Westbound		ILD	Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
WOVEHICITE	LOIL	mough	Right	LOIL	mough	Right	Lon	mough	rtight	Lon	mough	Right
V/C Ratio		0.04					0.01					
Delay (sec)		18.5					10.3					
LOS		С					В					
Approach Delay (sec)		18.5						0.1				
Approach LOS		С						A				
Overall Delay (sec) Overall LOS							.2 A					
						,	•					
Condition Direction		Eastbound			NO BUIL Westbound	D TO BU	LD COM	PARISON Northbound			Southbound	
Direction	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		-0.04					-0.01					
Delay (sec)		0.0					0.10					
LOS Approach Delay (sec)		0.0						0.0				
Approach LOS		0.0						0.0				
Overall Delay (sec)						·	0.1					
Overall LOS												
0.0.uli 200						-						

LOS Table 4A

Intersection								Neck Road				
Control Type				S	Stop Signs p	osted on \$	Side Stree	et Approach	es			
Time Period						AM Pe	ak Hour					
Condition						EVIS	TING					
Direction		Eastbound			Westbound	LAIG		Northbound	1	1	Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.02										
Delay (sec)		15.0										
LOS		15.0 B										
Approach Delay (sec)		15.0										
Approach LOS		В										
Overall Delay (sec)						0	.1					
Overall LOS							A					
Condition						NO F	BUILD					
Direction		Eastbound			Westbound		1	Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
litevenient	Lon	mough	rugin	LOIL	mough	rugitt	LOIL	rniougn	rugrit	Lon	mough	rugin
V/C Ratio		0.02										
Delay (sec)		15.7										
LOS		C										
Approach Delay (sec)		15.7										
Approach LOS		C										
Approach 203		C										
Overall Delay (sec)						0	.1					
Overall LOS							A					
Condition						BI	ILD					
Direction	-	Eastbound			Westbound	БО		Northbound		1	Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
WOVENIEIIL	Leil	mough	Right	Leit	mough	rigiii	Leit	rniougn	Right	Leit	mough	Rigilt
V/C Ratio							0.01					
Delay (sec)							10.6					
LOS							B					
							D	10.6				
Approach Delay (sec) Approach LOS							1	10.6 B		1		
Approach LOS								В				
Overall Delay (sec)						0	0.1					
Overall LOS							A					
Condition	1				NO BUII	D TO BU	ILD COME	PARISON				

Condition					NO BUIL	D TO BU	ILD COM	PARISON				
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS		 			 			 			 	
Overall Delay (sec) Overall LOS							.0 					

Note: Build condition: the driveway will become entrance only.

LOS Table 5A

Intersection							liddle Ne					
Control Type				S	Stop Signs p	osted on \$	Side Stree	t Approach	es			
Time Period						AM Pe	ak Hour					
Condition	T					EXIS	TING					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.33					0.09					
Delay (sec)		38.3					10.6					
LOS		E					В					
Approach Delay (sec)		38.3					_	0.6				
Approach LOS		E						A				
Overall Delay (sec) Overall LOS				<u>+</u>			.8 A					
Condition						NO E	BUILD					
Direction		Eastbound			Westbound			Northbound		1	Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
literent	Lon	mough	rugin	LOIL	mough	rugitt	Lon	mough	rugitu	Lon	mough	rugin
V/C Ratio		0.35					0.09					
Delay (sec)		41.6					10.9					
LOS		E					В					
Approach Delay (sec)		41.6					2	0.7				
Approach LOS		E						A				
Overall Delay (sec) Overall LOS							.8 A			•		
Condition						BU	ILD					
Direction		Eastbound			Westbound			Northbound		L	Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.36					0.09					
Delay (sec)		43.5					11.0					
LOS		=40.0 E					В					
Approach Delay (sec)		43.5						0.7		l		
Approach LOS		43.3 E						A				
		_										
Overall Delay (sec) Overall LOS							.8 A					
	1											
Condition					NO BUIL	D TO BU	ILD COM	PARISON				
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
		3			Ĵ			9	•	1	~	-

Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS		0.01 1.9 1.9 		 	 		0.00 0.10 	 0.0		 	 	
Overall Delay (sec) Overall LOS							.0					

Note: No build condition includes the closure of a commercial driveway on Clover Drive to the west of Middle Neck Road.

LOS Table 6A

Village of Great Neck												LO
M15-012												
	-											
Intersection					Allenwoo			leck Road				
Control Type						Traffic						
Time Period						AM Pea	ak Hour					
Condition						FXIS	TING					
Direction		Eastbound			Westbound	LVIO	TING	Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
		0	0		0	0		0	0		0	
V/C Ratio					0.38			0.36			0.48	
Delay (sec)					16.9			5.3			6.2	
LOS					В			A			A	
Approach Delay (sec)					16.9			5.3			6.2	
Approach LOS					В			А			А	
	_			<u> </u>								
Overall Delay (sec)						6	.7					
Overall LOS							4					
510.0						,	•					
Condition	-						UILD					
Condition Direction		Eastbound		1	Westbound	NOB	UILD	Northbound			Southbound	
	1.4		Dista	1.4		Dista	1.4		Dist	1.4		
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.01			0.16			0.44			0.57	
Delay (sec)		23.9			18.7			8.1			9.3	
LOS		C			В			A			A	
Approach Delay (sec)		23.9			18.7			8.1			9.3	
Approach LOS		23.9 C			B			A			9.5 A	
Approach 203		C			D			A			A	
Overall Delay (sec)							6					
Overall LOS						,	4					
Condition				1	Westbound	BU	ILD	Northbound			Southbound	
Condition					vvestbound				Diaht	Left	Through	
Direction	1.4	Eastbound	Dist	1.4	Thursday	Distat						
	Left	Eastbound Through	Right	Left	Through	Right	Left	Through	Right	Len	mough	Right
Direction	Left		Right	Left	Through 0.16	Right	Left	0.44			0.58	Right
Direction Movement V/C Ratio		Through 0.01			0.16			0.44			0.58	
Direction Movement V/C Ratio Delay (sec)		Through 0.01 23.9			0.16 18.7			0.44 8.1			0.58 9.5	
Direction Movement V/C Ratio Delay (sec) LOS		Through 0.01 23.9 C			0.16 18.7 B			0.44 8.1 A			0.58 9.5 A	
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		Through 0.01 23.9 C 23.9			0.16 18.7 B 18.7			0.44 8.1 A 8.1			0.58 9.5 A 9.5	
Direction Movement V/C Ratio Delay (sec) LOS		Through 0.01 23.9 C			0.16 18.7 B			0.44 8.1 A			0.58 9.5 A	
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS		Through 0.01 23.9 C 23.9			0.16 18.7 B 18.7			0.44 8.1 A 8.1			0.58 9.5 A 9.5	
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec)		Through 0.01 23.9 C 23.9			0.16 18.7 B 18.7	 9	 	0.44 8.1 A 8.1			0.58 9.5 A 9.5	
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS		Through 0.01 23.9 C 23.9			0.16 18.7 B 18.7	 9		0.44 8.1 A 8.1			0.58 9.5 A 9.5	
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec)		Through 0.01 23.9 C 23.9			0.16 18.7 B 18.7	 9	 	0.44 8.1 A 8.1			0.58 9.5 A 9.5	
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec)		Through 0.01 23.9 C 23.9			0.16 18.7 B 18.7	 9	 	0.44 8.1 A 8.1			0.58 9.5 A 9.5	
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS		Through 0.01 23.9 C 23.9			0.16 18.7 B 18.7 B	 9	 .7 A	0.44 8.1 A 8.1 A			0.58 9.5 A 9.5	
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS		Through 0.01 23.9 C 23.9 C			0.16 18.7 B 18.7 B	 9	 .7 A	0.44 8.1 A 8.1 A			0.58 9.5 A 9.5 A	
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS		Through 0.01 23.9 C 23.9			0.16 18.7 B 18.7 B	 9	 .7 A	0.44 8.1 A 8.1 A			0.58 9.5 A 9.5	

V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS	 0.00 0.0 0.0 	 	0.00 0.0 0.0	 	0.00 0.0 0.0 	 	0.01 0.2 0.2 	
Overall Delay (sec) Overall LOS).1 				

Note: No build condition changes compared to existing condition due to the addition of an eastbound approach controlled by the traffic signal.

Cantol Type Fraffic Signal Time Period PM Peak Hour Sondition Eastbound Westbound Northbound Southbound Orection Eastbound Westbound Northbound Eosthbound Right Left V/C Ratio 0.21 0.36 0.20 8.3 6.5 6.5 6.1 6.3 Orestion B 13.3 8.3 6.5 6.5 6.1 6.4 A 6.2 A A 6.2 A A 6.2 A A 6.2 A													
Time Period PM Peak Hour Condition Eastbound EXISTING Direction Eastbound Northbound Southbound V/C Ratio 0.21 0.36 0.20 0.35 0.29 0.32 Left Through Right Left </th <th>Intersection</th> <th></th> <th></th> <th></th> <th></th> <th>Old Mill</th> <th></th> <th></th> <th>ck Road</th> <th></th> <th></th> <th></th> <th></th>	Intersection					Old Mill			ck Road				
Condition Eastbound Westbound Northbound Southbound Urection Left Through Right Left <td< th=""><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th>0</th><th></th><th></th><th></th><th></th><th></th></td<>		-						0					
Direction Eastbound Westbound Northbound Southbound Southbound Southbound V/C Ratio 0.21 0.36 0.20 0.20 0.35 0.35 0.29 0.20 Delay (sec) 13.3 14.0 13.3 8.3 6.5 6.5 6.1 6.4 A <th>Time Fenou</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1 1011 00</th> <th>ak Houi</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Time Fenou						1 1011 00	ak Houi					
Movement Left Through Right V/C Ratio 0.21 0.33 13.3 13.3 0.20 0.35 0.55 6.5 6.1 0.42 ADS B B B A A A A A Approach LOS B B B A A A A A	Condition		-					TING					
V/C Ratio 0.21 0.36 0.20 0.35 0.35 0.29 0.35 Delay (sec) B 13.3 B B 6.3 6.5 6.5 6.1 6.4 Approach LOS B B B 6.8 A <		l eft		Right	l eft			Left			Left		
Delay (sec) Approach Delay (sec) Approach Delay (sec) 13.3 B 13.7 13.3 B B 13.3 C B 13.3 B B 13.3 C B 13.3 C B 13.3 C B 13.3 C B 13.3 C C 13.3 C <t< td=""><td></td><td></td><td>mough</td><td></td><td>Lon</td><td></td><td>rtigitt</td><td></td><td></td><td></td><td></td><td>mough</td><td></td></t<>			mough		Lon		rtigitt					mough	
COS Image: Second													
Approach Delay (sec) Overall Delay (sec) Dereil Delay (sec) Dereil Delay (sec) Table High Left 13.3 B 6.8 A 6.8 A 6.2 A Condition													
Approach LOS B B A A Overall LOS		5		5									
Overall LOS A Soundition Eastbound Westbound Northbound Southbound Orection Eastbound Westbound Northbound Southbound Vic Ratio 0.21 0.39 0.21 0.37 0.37 0.31 0.42 Delay (sec) 13.3 14.2 13.3 8.7 6.7 6.7 6.2 6.6 Approach Delay (sec) 13.8 B B 8.7 6.7 6.7 6.2 6.6 Approach LOS B B 8.7 A A A A Overall Delay (sec) B B A	Approach LOS		В			В			А			А	
Direction Eastbound Westbound Northbound Southbound Movement Left Through Right Left Right Left Right Left Right Left Right Right Left Right Right Left Through Right Left Through<	Overall Delay (sec) Overall LOS												
Movement Left Through Right V/C Ratio 0.21 0.39 0.21 0.22 0.37 0.31 0.34 Delay (sec) 13.3 14.2 13.3 8.7 6.7 6.7 6.2 6.6 Approach Delay (sec) 13.8 B B A A A A Overall Delay (sec) B 0.21 A A A A A A A A A A A A A A A A A A A A A A A A <td< td=""><td>Condition</td><td></td><td></td><td></td><td></td><td></td><td>NO E</td><td>UILD</td><td></td><td></td><td></td><td></td><td></td></td<>	Condition						NO E	UILD					
V/C Ratio Delay (sec) 0.21 0.39 0.21 0.22 0.37 0.31 0.34 LOS Approach LOS B B B A	Direction			_									
Delay (sec) LOS 13.3 B B 14.2 B B B 13.3 B B 8.7 A 6.7 A 6.7 A 6.7 A 6.7 A 6.2 A A A	Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Delay (sec) LOS 13.3 B B 14.2 B B B 13.3 B B 8.7 A 6.7 A 6.7 A 6.7 A 6.7 A 6.2 A A A	V/C Ratio								0.37	0.37			
Approach Delay (sec) Approach LOS 13.8 B 13.3 B 13.3 B 7.0 A 6.4 A Overall Delay (sec) Overall LOS	Delay (sec)												
Approach LOS B B B A A Overall Delay (sec) Overall LOS		В		В				A		A	A		А
Condition Eastbound Westbound Northbound Southbound Overall LOS Eastbound Westbound Northbound Southbound Movement Left Through Right Left A A A A A A A A A A A A A A A A A A													
Dverall LOS A Condition Eastbound Westbound Northbound Southbound Movement Left Through Right Left Right Right Left Right Right Left Right	Approach 203		В			В			A			A	
Direction Eastbound Westbound Northbound Southbound Movement Left Through Right Left 0.34 0.34 A	Overall Delay (sec) Overall LOS												
Movement Left Through Right Left O.34 A.33 C.37 D.31 C.31 D.34 A.33 C.37 D.31 C.33 C.33 C.33 C.37 Right Right Left Through Right Left Through Right Left Through Right Left Southout Southout Direction<	Condition						BU	ILD					
UC Ratio 0.21 0.39 0.21 0.22 0.37 0.37 0.31 0.34 LOS 13.3 14.2 13.3 8.8 6.7 6.7 6.3 6.4 LOS B B B 8.8 6.7 6.7 6.3 6.4 Approach LOS B B A	Direction												
Delay (sec) LOS Approach Delay (sec) 13.3 14.2 13.3 8.8 6.7 6.7 6.3 6.4 Approach Delay (sec) Approach LOS 13.8 13.3 13.3 13.3 7.0 6.4 A	Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Delay (sec) LOS Approach Delay (sec) 13.3 14.2 13.3 8.8 6.7 6.7 6.3 6.4 Approach Delay (sec) Approach LOS 13.8 13.3 13.3 13.3 7.0 6.4 A	V/C Ratio	0.21		0.39		0.21		0.22	0.37	0.37	0.31		0.34
LOS B B B A B													
Approach LOS B B B A A Overall Delay (sec) Dverall LOS S.0 A A A A Condition S.0 A A A A Direction Eastbound Westbound Northbound Southbound Movement Left Through Right Left Through Right V/C Ratio 0.00 0.00 0.00 0.0 0.0 0.0 LOS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 V/C Ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 COS	LOS												
Deverall Delay (sec) Overall LOS 8.0 A Condition NO BUILD TO BUILD COMPARISON A Direction Eastbound Westbound Northbound Southbound Direction Eastbound Westbound Northbound Eosthbound Right V/C Ratio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Delay (sec) 0.0 0.0 0.0 0.0	Approach Delay (sec)												
Direction NO BUILD TO BUILD COMPARISON Direction Eastbound Westbound Northbound Southbound Right Movement Left Through Right Left Through	Approach LOS		В			В			A			A	
Direction NO BUILD TO BUILD COMPARISON Direction Eastbound Westbound Northbound Southbound Right Movement Left Through Right Left Through	Overall Delay (sec)						8	.0					
Direction Eastbound Westbound Northbound Southbound Movement Left Through Right Right Right Left Through Right Right <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td>							,	4					
Direction Eastbound Westbound Northbound Southbound Movement Left Through Right Right Right Left Through Right Right <td></td>													
Movement Left Through Right Right Left Through Right Left Through Right Right Left							D TO BU	LD COMP	ARISON				
V/C Ratio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Delay (sec) 0.0 0.0 0.1 0.0 0.0 0.1 0.0 _OS 0.0 Approach Delay (sec) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Condition					NO DUIL							
Delay (sec) 0.0 0.0 0.1 0.0 0.1 0.0 LOS 0.1 0.0 0.1 0.0 Approach Delay (sec) 0.0 0.0 0.0 0.0 0.0 0.0	Condition Direction					Westbound							
Delay (sec) 0.0 0.0 0.1 0.0 0.1 0.0 LOS 0.1 0.0 0.1 0.0 Approach Delay (sec) 0.0 0.0 0.0 0.0 0.0 0.0	Condition Direction	Left		Right	Left	Westbound		Left			Left	Through	Right
LOS	Condition Direction Movement		Through	•		Westbound Through	Right		Through	Right			
	Condition Direction Movement V/C Ratio	0.00	Through 	0.00		Westbound Through 0.00	Right	0.00	Through 0.00	Right 0.00	0.00		0.00
Approach LOS	Condition Direction Movement	0.00 0.0	Through 	0.00 0.0		Westbound Through 0.00 0.0	Right 	0.00 0.1	Through 0.00 0.0	Right 0.00 0.0	0.00 0.1		0.00 0.0
	Condition Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)	0.00 0.0	Through 	0.00 0.0		Westbound Through 0.00 0.0 	Right 	0.00 0.1	Through 0.00 0.0 	Right 0.00 0.0	0.00 0.1		0.00 0.0

Intersection								Neck Road				
Control Type				S	top Signs p	osted on S	Side Stree	et Approach	es			
Time Period						PM Pea	ak Hour					
Condition						EXIS	TING					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.01					0.00					
Delay (sec)		13.8					8.8					
LOS		13.0 B					0.0 A					
		13.8					A					
Approach Delay (sec) Approach LOS		13.8 B						13.8 B				
Overall Delay (sec) Overall LOS							.0 A					
Condition						NO E	UILD					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
		5	J		y	9		5	J		J	J
V/C Ratio		0.01					0.00					
Delay (sec)		14.4					9.0					
LOS		В					А					
Approach Delay (sec)		14.4						9.0				
Approach LOS		В						А				
Overall Delay (sec)							.0					
Overall LOS						/	4					
Condition						BU	ILD					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.11										
Delay (sec)		15.5										
LOS		C										
Approach Delay (sec)		15.5										
Approach LOS		C										
Overall Delay (sec)				<u> </u>		0	.4			1		
Overall LOS							4					
Condition						D TO BU	ILD COM	PARISON				
Condition Direction Movement		Eastbound			NO BUII Westbound Through	D TO BU	LD COM	PARISON Northbound	l Right		Southbound	Right

Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS		0.10 1.1 Impact 1.1 Impact										
Overall Delay (sec) Overall LOS).4					

Note: Build condition on the northbound approach improves as the driveway will become exit only.

LOS Table 2P

Intersection					Woolev	s Lane at	Middle Ne	ck Road				
Control Type							Signal					
Time Period						PM Pea	ak Hour					
Condition	T					EXIS	TING					
Direction		Eastbound	E L 1 /		Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio					0.23			0.31			0.32	
Delay (sec) LOS					22.1 C			3.5 A			3.6 A	
Approach Delay (sec)					22.1			3.5			3.6	
Approach LOS					С			A			A	
Overall Delay (sec)						4	.7					
Overall LOS							A					
Condition		Feethound			M/a ath a und		UILD	Northbound			Couthhouse	
Direction Movement	Left	Eastbound Through	Right	Left	Westbound Through	Right	Left	Northbound Through	Right	Left	Southbound Through	Right
//C Ratio					0.19		-	0.35			0.36	
Delay (sec)					20.4			4.3			4.5	
LOS Approach Delay (sec)					C 20.4			A 4.3			A 4.5	
Approach LOS					С			A			A	
Overall Delay (sec) Overall LOS							.4 A					
							ILD					
Direction	Left	Eastbound	Right	l off	Westbound			Northbound		l oft	Southbound	
Direction Movement	Left	Eastbound Through	Right	Left	Through		ILD Left	Through	Right	Left	Through	Right
Direction Movement //C Ratio		Through 			Through 0.19	Right	Left	Through 0.35	Right 		Through 0.37	Right
Direction Movement //C Ratio Delay (sec) .OS		Through			Through 0.19 20.4 C	Right	Left	Through 0.35 4.3 A	Right		Through 0.37 4.5 A	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		Through 			Through 0.19 20.4	Right 	Left 	Through 0.35 4.3	Right 		Through 0.37 4.5	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		Through 			Through 0.19 20.4 C 20.4	Right 	Left 	Through 0.35 4.3 A 4.3	Right 		Through 0.37 4.5 A 4.5	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec)		Through 			Through 0.19 20.4 C 20.4	Right 5	Left 	Through 0.35 4.3 A 4.3	Right 		Through 0.37 4.5 A 4.5	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec)		Through 			Through 0.19 20.4 C 20.4	Right 5	Left 	Through 0.35 4.3 A 4.3	Right 		Through 0.37 4.5 A 4.5	Right
Direction Movement //C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Dverall Delay (sec)		Through 			Through 0.19 20.4 C 20.4	Right 5	Left 	Through 0.35 4.3 A 4.3	Right 		Through 0.37 4.5 A 4.5	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS		Through 			Through 0.19 20.4 C 20.4 C	Right 5	Left 	Through 0.35 4.3 A 4.3 A	Right 		Through 0.37 4.5 A 4.5	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction		Through Eastbound			Through 0.19 20.4 C 20.4 C	Right 5 /	Left 4 A	Through 0.35 4.3 A 4.3 A A A A A A A A A A A A A	Right 		Through 0.37 4.5 A 4.5	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction		Through 			Through 0.19 20.4 C 20.4 C 20.4 C NO BUI	Right 5 , LD TO BU	Left 	Through 0.35 4.3 A 4.3 A A A PARISON	Right 		Through 0.37 4.5 A 4.5 A	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio	 Left	Eastbound Through	 Right	 Left	NO BUI Westbound Through	Right 5 / LD TO BU Right 	Left 4 A LD COMI Left 	Through 0.35 4.3 A 4.3 A A A A A A A A A A A A A	Right Right	 Left	Through 0.37 4.5 A 4.5 A Southbound Through 0.01	Right Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec)	 Left	Through Eastbound Through	Right	 	Through 0.19 20.4 C 20.4 C C NO BUI Westbound Through	Right 5 / LD TO BU Right	Left 4 A LD COMI	Through 0.35 4.3 A 4.3 A A A A A A A A A A A A A	Right Right	 Left	Through 0.37 4.5 A 4.5 A Southbound Through	Right Right
Direction Movement V/C Ratio Delay (sec) _OS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) _OS Approach Delay (sec)		Eastbound Through	 Right	 Left 	NO BUI Westbound Through 0.19 20.4 C 20.4 C	Right 5 / LD TO BU Right 	Left 4 A LD COMI	Through 0.35 4.3 A 4.3 A A Output A PARISON Northbound Northbound Through 0.00 0.0 0.0	Right Right	 Left	Through 0.37 4.5 A 4.5 A Southbound Through 0.01 0.0 0.0	Right Right
Direction Movement V/C Ratio Delay (sec) _OS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) _OS Approach Delay (sec)		Eastbound Through	 Right	 Left 	NO BUI Westbound Through 0.19 20.4 C	Right 5 / LD TO BU Right 	Left 4 A LD COMI	Through 0.35 4.3 A 4.3 A A A A A A A A A A A A A	Right Right	 Left	Through 0.37 4.5 A 4.5 A A Southbound Through 0.01 0.0 	Right Right
Condition Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach Delay (sec) COS Approach Delay (sec) COS Approach Delay (sec) COS Coverall Delay (sec) COS Coverall Delay (sec) COS Coverall Delay (sec) COVERATION COVERATIO		Eastbound Through	 Right	 Left 	NO BUI Westbound Through 0.19 20.4 C 20.4 C	Right 5 / LD TO BU Right 	Left 4 LD COMI Left 	Through 0.35 4.3 A 4.3 A A Output A PARISON Northbound Northbound Through 0.00 0.0 0.0	Right Right	 Left	Through 0.37 4.5 A 4.5 A Southbound Through 0.01 0.0 0.0	Right Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		Eastbound Through	 Right	 Left 	NO BUI Westbound Through 0.19 20.4 C 20.4 C	Right 5 // LD TO BU Right 0	Left 4 A LD COMI	Through 0.35 4.3 A 4.3 A A Output A PARISON Northbound Northbound Through 0.00 0.0 0.0	Right Right	 Left	Through 0.37 4.5 A 4.5 A Southbound Through 0.01 0.0 0.0	Right Right

Control Type Time Period	1							eck Road				
Time Period				S	itop Signs p			et Approach	es			
TITICT CHOU						PM Pea	ak Hour					
Condition Direction	+	Eastbound			Westbound		TING	Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Wovement	Lon	mough	rtigrit	Lon	mough	rugitt	Lon	mough	rtight	Lon	mough	rugni
V/C Ratio		0.01					0.00					
Delay (sec)		14.4					8.8					
LOS		В					A					
Approach Delay (sec) Approach LOS		14.4 B						8.8 A				
		D						А				
Overall Delay (sec) Overall LOS							1.1 A					
Condition	1					NO F	BUILD					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
							0.00					
V/C Ratio Delay (sec)		0.01 15.0					0.00 8.9					
LOS		15.0 B					6.9 A					
Approach Delay (sec)		15.0	-					8.9				
Approach LOS	1	В						A				
							l			l		
Overall Delay (sec)							.1					
Overall LOS							A					
O 1111	-											
Condition Direction	+	Eastbound			Westbound		ILD	Northbound			Southbound	1
	1		Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Movement	Left	Through	Night									
							0.00					
V/C Ratio		0.01					0.00					
		0.01 14.4					9.0					
V/C Ratio Delay (sec) LOS Approach Delay (sec)		0.01 14.4 B 14.4						 9.0				
V/C Ratio Delay (sec) LOS		0.01 14.4 B					9.0					
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS		0.01 14.4 B 14.4					9.0 A	 9.0				
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec)		0.01 14.4 B 14.4				 0	9.0 A	 9.0				
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS		0.01 14.4 B 14.4				 0	9.0 A	 9.0				
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec)		0.01 14.4 B 14.4				 0	9.0 A	 9.0				
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS		0.01 14.4 B 14.4				 0	9.0 A	9.0 A				
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS		0.01 14.4 B 14.4 B			 NO BUII	 0 /	9.0 A	9.0 A PARISON				
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS		0.01 14.4 B 14.4				 0 /	9.0 A	9.0 A				
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement		0.01 14.4 B 14.4 B Eastbound Through	Right	 Left	NO BUII Westbound	 0 // LD TO BU Right	9.0 A I.0 A ILD COMF	9.0 A A PARISON Northbound Through	 I Right	 	Southbound	 I Right
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement		0.01 14.4 B 14.4 B Eastbound Through -0.01	 Right	 Left	NO BUII Westbound Through	 0 // LD TO BU Right	9.0 A I.0 A ILD COMF	9.0 A PARISON Northbound Through	 Right	 	Southbound	 I Right
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec)		0.01 14.4 B 14.4 B Eastbound Through	Right	 Left 	NO BUII Westbound	 0 // LD TO BU Right 	9.0 A I.0 A Left 0.00 0.10	PARISON Northbound Through	 I Right 	 Left 	Southbound Through	 I Right
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) LOS		0.01 14.4 B 14.4 B Eastbound Through -0.01 -0.6	 Right	 Left	NO BUI Westbound Through	 0 // LD TO BU Right	9.0 A I.0 A ILD COMF	9.0 A PARISON Northbound Through	 Right	 	Southbound	 Right
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec)		0.01 14.4 B 14.4 B Eastbound Through -0.01 -0.6 	 Right	 Left 	NO BUI Westbound Through	 0 // LD TO BU Right 	9.0 A I.0 A Left 0.00 0.10	PARISON Northbound Through	 I Right 	 Left 	Southbound Through	 Right
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		0.01 14.4 B 14.4 B Eastbound Through -0.01 -0.6 -0.6	 Right	 Left 	NO BUII Westbound Through	 0 // LD TO BU Right 	9.0 A I.0 A Left 0.00 0.10	 9.0 A PARISON Northbound Through 0.1	 I Right 	 Left 	Southbound Through	 Right
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		0.01 14.4 B 14.4 B Eastbound Through -0.01 -0.6 -0.6	 Right	 Left 	NO BUII Westbound Through	 0 // Right 	9.0 A I.0 A Left 0.00 0.10	 9.0 A PARISON Northbound Through 0.1	 I Right 	 Left 	Southbound Through	 Right

LOS Table 4P

Intersection								Neck Road				
Control Type				S	top Signs p			t Approach	es			
Time Period						PM Pea	ak Hour					
Condition						EXIS	TING					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio							0.00					
Delay (sec)							8.9					
LOS							Α					
Approach Delay (sec)								8.9				
Approach LOS								А				
Overall Delay (sec) Overall LOS							0.0 A			•		
Condition						NO F	BUILD					
Direction	-	Eastbound			Westbound			Northbound		1	Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Wevenient	LOIL	mough	rugni	Lon	mough	rugitt	LOIL	mough	Right	Lon	mough	rugin
V/C Ratio							0.00					
Delay (sec)							9.0					
LOS							A					
Approach Delay (sec)								9.0				
Approach LOS								А				
Overall Delay (sec) Overall LOS							0.0 A			•		
Condition						BU	ILD					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio							0.05					
Delay (sec)							9.5					
LOS							A					
Approach Delay (sec)								9.5				
Approach LOS								A				
Overall Delay (sec) Overall LOS							.5 A					
Condition						D TO BU	ILD COMP	ARISON				
Direction	ſ	Eastbound			Westbound			Northbound			Southbound	

Condition					NO BUIL	_D TO BU	ILD COM	PARISON				
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio							0.05					
Delay (sec)							0.50					
LOS												
Approach Delay (sec)								0.5				
Approach LOS												
						0).5					
Overall Delay (sec) Overall LOS												

Note: Build condition: the driveway will become entrance only.

LOS Table 5P

Intersection						Drive at N						
Control Type				S	itop Signs p			et Approach	es			
Time Period						PM Pea	ak Hour					
Condition						EXIS	TING					
Direction		Eastbound			Westbound			Northbound	1		Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
literent	Lon	mough	rugin	Lon	mough	rtigitt	Lon	mough	rtight	Lon	mough	rugin
V/C Ratio		0.05					0.03					
Delay (sec)		14.5					9.1					
LOS		В					A					
Approach Delay (sec)		14.5					~	9.1				
Approach LOS		B						A				
		D						~				
Overall Delay (sec)						0	.4					
Overall LOS							A					
Condition						NO E	BUILD					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.04					0.03					
Delay (sec)		13.6					9.3					
LOS		В					Α					
Approach Delay (sec)		13.6						9.3				
Approach LOS		В						А				
Overall Delay (sec)				L		0	.4			1		
Overall LOS							A					
Condition		-					ILD					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Datia		0.04					0.02					
V/C Ratio		0.04					0.03					
Delay (sec)		13.7					9.3					
LOS		B					A					
Approach Delay (sec) Approach LOS		13.7 B						9.3 A				
		D						A				
Overall Delay (sec)						0	.4					
Overall LOS							A					
-						-						
Condition						D TO BU						
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.00					0.00					

V/C Ralio	 0.00	 	 	0.00		 	
Delay (sec)	 0.1	 	 	0.00		 	
LOS	 	 	 			 	
Approach Delay (sec)	0.1				0.0		
Approach LOS							
Overall Delay (sec)			0	.0			
Overall LOS			-				

Note: No build condition includes the closure of a commercial driveway on Clover Drive to the west of Middle Neck Road.

LOS Table 6P

Village of Great Neck												
M15-012												
Intersection					Allenwoo	d Road at	Middle N	leck Road				
Control Type							Signal					
Time Period						PM Pea	ak Hour					
Condition						EXIS	TING					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Datia					0.25			0.26			0.20	
V/C Ratio					0.35			0.36			0.29	
Delay (sec)					21.6			3.4			3.1	
LOS					С			A			A	
Approach Delay (sec)					21.6			3.4			3.1	
Approach LOS					С			A			A	
Overall Delay (sec)							.0					
Overall LOS						/	4					
Condition	_	E the of		r	14/	NOE		N I a statistic a successf		1	0	
Direction		Eastbound	B: 11		Westbound	B : 14		Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.04			0.04			0.45			0.34	
		0.01			0.04			0.45				
Delay (sec)		24.8			22.3			6.0			5.3	
LOS		С			С			A			A	
Approach Delay (sec)		24.8			22.3			6.0			5.3	
Approach LOS		С			С			A			Α	
Overall Delay (sec)						6	.5					
Overall LOS							A					
						-	-					
Condition						BU	ILD					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
								0.40			0.05	
V/C Ratio		0.01			0.03			0.46			0.35	
Delay (sec)		24.9			22.4			6.0			5.3	
LOS		С			С			A			A	
Approach Delay (sec)		24.9			22.4			6.0		1	5.3	
Approach LOS		С			С			A			A	
							_					
Overall Delay (sec)							.5					
Overall LOS						1	4					
Condition					NO PU			PARISON				
		Fasth		1		D 10 BU					Couthless	
		Eastbound		1	Westbound		1	Northbound		1	Southbound	
Direction	1.4		Dicks	1.4	The	Dicks	1.4	The	Dick	4.1	Thurstein	D:
Direction Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
	Left		Right	Left	Through -0.01	Right	Left	Through 0.01	Right	Left	Through 0.01	Right

V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS	 0.00 0.1 0.1 	 	-0.01 0.1 0.1 	 	0.01 0.0 0.0 	 	0.01 0.0 0.0 	
Overall Delay (sec) Overall LOS				.0				

Note: No build condition changes compared to existing condition due to the addition of an eastbound approach controlled by the traffic signal.

Intersection						Old Mill	Road at I	Aiddle Ne	ck Road				
Control Type								Signal					
Time Period							Saturday	Peak Hou	r				
Condition							EXIS	TING					
Direction			Eastbound	B 1.1.		Westbound			Northbound			Southbound	
Movement	Le	eft	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio	0.0			0.16		0.04		0.12	0.25	0.26	0.27		0.30
Delay (sec) LOS	10 E	.2 3		10.5 B		9.9 A		12.5 B	10.4 В	10.5 B	10.6 B		11.0 B
Approach Delay Approach LOS	(sec)		10.4 B			9.9 A			10.7 B			10.8 B	
Overall Delay (s Overall LOS	sec)				•).7 3			<u>I</u>		
Condition							NO F	UILD					
Direction			Eastbound			Westbound			Northbound			Southbound	
Movement	Le	eft	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio Delay (sec) LOS Approach Delay Approach LOS	E	.2	 10.4 B	0.17 10.6 B		0.04 9.9 A 9.9 A		0.13 12.8 B	0.27 10.6 B 10.9 B	0.27 10.6 B	0.29 10.8 B	 11.0 B	0.32 11.2 B
Overall Delay (s Overall LOS	sec)).8 3					
Condition							BU	ILD					
Direction Movement	Le	ft	Eastbound Through	Right	Left	Westbound Through	Right	Left	Northbound Through	Right	Left	Southbound Through	d Right
Movement			mough		Leit		Ngn					mough	
		90		0.18 10.6		0.04 9.9		0.13 13.0	0.27 10.6	0.27 10.7	0.29 10.8		0.33 11.3
V/C Ratio Delay (sec) LOS Approach Delay Approach LOS	10 E	.2 3	 10.4 B	В		A 9.9 A		B	B 10.9 B	В	В	 11.1 B	В
Delay (sec) LOS Approach Delay	10 E (sec)		 10.4	В		A 9.9	10		В 10.9			11.1	В
Delay (sec) LOS Approach Delay Approach LOS Overall Delay (s Overall LOS	10 E (sec)		 10.4	В		A 9.9 A	1(B).9 3	B 10.9 B			11.1	в
Delay (sec) LOS Approach Delay Approach LOS Overall Delay (s Overall LOS Condition Direction	(sec) 10 Eec)	3	 10.4 B Eastbound			A 9.9 A NO BUII Westbound	1(1 	B).9 3	B 10.9 B PARISON Northbound	В	В	11.1 B Southbound	1
Delay (sec) LOS Approach Delay Approach LOS Overall Delay (s Overall LOS	10 E (sec)	3	10.4 B	B	Left	A 9.9 A NO BUII	1(B).9 3	B 10.9 B	В		11.1 B	
Delay (sec) LOS Approach Delay Approach LOS Overall Delay (s Overall LOS	/ (sec) 10 E E E E E E E E E E E E E	3 eft 00 0	 10.4 B Eastbound			A 9.9 A NO BUII Westbound	1(1 	B).9 3	B 10.9 B PARISON Northbound	В	В	11.1 B Southbound	1

Control Type Time Period	1			Cham Clause a							
Time Devied							et Approach	es			
Time Period					Saturday	Peak Hou	ır				
Condition	1				EVIS	TING					
Direction		Eastbound		Westbound			Northbound	1		Southboun	1
Movement	Left	Through Righ	t Left	Through	Right	Left	Through	Right	Left	Through	Right
				0	<u> </u>		0	<u> </u>			
V/C Ratio		0.02									
Delay (sec)		17.2									
LOS Approach Delay (sec)		C 17.2									
Approach LOS		C									
		0									
			•		0				•		
Overall Delay (sec) Overall LOS						.1 A					
						·					
Condition					NO F						
Direction		Eastbound		Westbound			Northbound	1	r –	Southboun	b
Movement	Left	Through Righ	t Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio Delay (sec)		0.03 17.5									
LOS		C									
Approach Delay (sec)		17.5									
Approach LOS		C									
Overall Delay (sec)					0	.1					
Overall Delay (sec) Overall LOS						A					
					-						
					BI	ILD					
Condition					DU						
Direction		Eastbound		Westbound			Northbound			Southboun	
Direction	Left	Eastbound Through Righ	t Left	Westbound Through		Left	Northbound Through	d Right	Left	Southbound Through	
Direction Movement		Through Righ		Through	Right	Left	Through	Right		Through	Right
Condition Direction Movement V/C Ratio Delay (sec)		Through Righ		Through	Right	Left	Through 	Right		Through 	Right
Direction Movement V/C Ratio Delay (sec)		Through Righ 0.22 25.4		Through	Right	Left	Through	Right		Through	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		Through Righ 0.22 25.4 D 25.4		Through 	Right 	Left 	Through 	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS		Through Righ 0.22 25.4 D		Through 	Right 	Left 	Through 	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		Through Righ 0.22 25.4 D 25.4		Through 	Right 	Left 	Through 	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec)		Through Righ 0.22 25.4 D 25.4		Through 	Right 1	Left 	Through 	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS		Through Righ 0.22 25.4 D 25.4		Through 	Right 1	Left 	Through 	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec)		Through Righ 0.22 25.4 D 25.4		Through 	Right 1	Left 	Through 	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec)		Through Righ 0.22 25.4 D 25.4		Through 	Right 1	Left 	Through 	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition		Through Righ 0.22 25.4 D 25.4 D D		Through NO BUII	Right 1 ,	.2	Through PARISON	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction		Through Righ 0.22 25.4 D 25.4 D		Through NO BUII Westbound	Right 1 ,	.2 A ILD COM	Through PARISON Northbourg	Right 		Through Southbourn	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction		Through Righ 0.22 25.4 D 25.4 D D		Through NO BUII	Right 1 ,	.2	Through PARISON	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio		Through Righ 0.22 25.4 D 25.4 D		Through NO BUII Westbound	Right 1 ,	.2 A ILD COM	Through PARISON Northbourg	Right 		Through Southbourn	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec)		Through Righ 0.22 25.4 D 25.4 D	t Left	Through NO BUI Westbound Through	Right 1 // LD TO BU Right 	.2 A Left Left	Through PARISON Northbound Through	Right i Right 	 Left 	Through Southboun Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) LOS	 Left	Through Righ 0.22 25.4 D 25.4 D D D Through Righ 0.19 7.9 Impact	t Left	NO BUI Westbound Through	Right 1 , , LD TO BU Right 	.2 A Left Left 	Through PARISON Northbound Through 	Right Right 	 Left	Through Southboun Through	Right d Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		Through Righ 0.22 25.4 D 25.4 D D Through Righ 0.19 7.9 7.9 7.9	t Left	NO BUI Westbound Through	Right 1 // LD TO BU Right 	.2 A Left .2 A Left .2 	Through PARISON Northbound Through 	Right i Right 	 Left 	Through Southboun Through	Right B Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec)		Through Righ 0.22 25.4 D 25.4 D D D Through Righ 0.19 7.9 Impact	t Left	NO BUI Westbound Through	Right 1 // LD TO BU Right 	.2 A Left .2 A Left .2 	Through PARISON Northbound Through 	Right i Right 	 Left 	Through Southboun Through	Right d Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach Delay (sec) Approach LOS		Through Righ 0.22 25.4 D 25.4 D D Through Righ 0.19 7.9 7.9 7.9	t Left	NO BUI Westbound Through	Right 1 LD TO BU Right 	Left .2 A ILD COM Left 	Through PARISON Northbound Through 	Right i Right 	 Left 	Through Southboun Through	Right B Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		Through Righ 0.22 25.4 D 25.4 D D Through Righ 0.19 7.9 7.9 7.9	t Left	NO BUI Westbound Through	Right 1 // LD TO BU Right 1	.2 A Left .2 A Left .2 	Through PARISON Northbound Through 	Right i Right 	 Left 	Through Southboun Through	Right d Right

LOS Table 2S

Intersection												
					Wooley	s Lane at		ck Road				
Control Type							Signal					
Time Period						Saturday	Peak Hou	r				
Condition							TING					
Direction	1 - 6	Eastbound		1.4	Westbound		1.4	Northbound		1.4	Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio					0.26			0.17			0.23	
Delay (sec)					25.0 C			2.3			2.5	
LOS Approach Delay (sec)					25.0			A 2.3			A 2.5	
Approach Delay (sec) Approach LOS					C			A			A	
Overall Delay (sec) Overall LOS		3.7 A										
Condition						NO	BUILD					
Condition Direction		Eastbound		1	Westbound			Northbound			Southbound	4
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio					0.27			0.18			0.24	
Delay (sec)					24.9			2.4			2.6	
LOS					С			А			А	
Approach Delay (sec) Approach LOS					24.9 C			2.4 A			2.6 A	
Overall Delay (sec) Overall LOS		3.7 A										
Condition							ILD					
Direction	1	Eastbound		1 - 4	Westbound			Northbound		1 - 4	Southbound	
	Left	Eastbound Through	Right	Left	Westbound Through		ILD Left	Northbound Through	Right	Left	Southbound Through	d Right
Direction Movement V/C Ratio	Left			Left	Through 0.27			Through 0.18		Left	Through 0.25	
Direction Movement V/C Ratio Delay (sec)		Through 	Right 		Through 0.27 24.9	Right 	Left 	Through 0.18 2.4	Right 		Through 0.25 2.6	Right
Direction Movement V/C Ratio Delay (sec) LOS		Through 	Right		Through 0.27 24.9 C	Right	Left	Through 0.18 2.4 A	Right 		Through 0.25 2.6 A	Right
Direction Movement V/C Ratio Delay (sec)		Through 	Right 		Through 0.27 24.9	Right 	Left 	Through 0.18 2.4	Right 		Through 0.25 2.6	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		Through 	Right 		Through 0.27 24.9 C 24.9	Right 	Left 	Through 0.18 2.4 A 2.4	Right 		Through 0.25 2.6 A 2.6	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS		Through 	Right 		Through 0.27 24.9 C 24.9 C	Right 3	.7	Through 0.18 2.4 A 2.4 A	Right 		Through 0.25 2.6 A 2.6	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition		Through 	Right 		Through 0.27 24.9 C 24.9 C 24.9 C	Right 3 LD TO BU	.7	Through 0.18 2.4 A 2.4 A PARISON	Right 		Through 0.25 2.6 A 2.6 A	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS		Through 	Right 		Through 0.27 24.9 C 24.9 C	Right 3 LD TO BU	.7	Through 0.18 2.4 A 2.4 A	Right 		Through 0.25 2.6 A 2.6	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement		Eastbound Through	Right Right	 Left	Through 0.27 24.9 C 24.9 C C Westbound Through	Right 3 LD TO BU Right	Left LD COMI	Through 0.18 2.4 A 2.4 A A PARISON Northbound Through	Right Right	 	Through 0.25 2.6 A 2.6 A Southboune Through	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio		Through Eastbound	Right Right 		Through 0.27 24.9 C 24.9 C C Westbound Through 0.00	Right 3 LD TO BU Right	Left A ILD COMI Left 	Through 0.18 2.4 A 2.4 A PARISON Northbound Through 0.00	Right	 Left	Through 0.25 2.6 A 2.6 A Southbound Through 0.01	Right d Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) LOS		Eastbound Through	Right Right		NO BUI Westbound Through 0.27 24.9 C	Right 3 LD TO BU Right	Left LD COMI	Through 0.18 2.4 A 2.4 A A PARISON Northbound Through 0.00 0.0 	Right Right 	 	Through 0.25 2.6 A 2.6 A Southbound Through 0.01 0.0 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		Eastbound Through	Right Right	 Left	NO BUI Westbound Through 0.27 24.9 C 24.9 C	Right 3 C LD TO BU Right 	Left iLD COMI Left 	Through 0.18 2.4 A 2.4 A A 2.4 A A 2.4 A A Northbound Through A 0.00 0.00 0.00 0.0	Right Right	 Left	Through 0.25 2.6 A 2.6 A Southbound Through 0.01 0.0 0.0	Right d Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) LOS		Eastbound Through	Right Right	 Left	NO BUI Westbound Through 0.27 24.9 C	Right 3 C LD TO BU Right 	Left iLD COMI Left 	Through 0.18 2.4 A 2.4 A A PARISON Northbound Through 0.00 0.0 	Right Right	 Left	Through 0.25 2.6 A 2.6 A Southbound Through 0.01 0.0 	Right d Right

Control Type		Millbrook Court at Middle Neck Road										
		Stop Signs posted on Side Street Approaches										
Time Period						Saturday	Peak Hou	r				
Condition	1					EVIC	TING					
Direction		Eastbound			Westbound	EAI3		Northbound			Southbound	1
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.05										
Delay (sec)		0.05 21.8										
LOS		C										
Approach Delay (sec)		21.8										
Approach LOS		С										
Overall Delay (sec) Overall LOS		0.3 A										
Condition						NO E	UILD					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.06										
Delay (sec)		22.9										
LOS		С										
Approach Delay (sec) Approach LOS		22.9 C										
Overall Delay (sec) Overall LOS							.3 4			<u> </u>		
Condition						BU						
		Eastbound			Westbound	BU	ILD	Northbound			Southbound	1
Direction	Left	Eastbound Through	Right	Left	Westbound Through	BU Right		Northbound Through	l Right	Left	Southbound Through	l Right
Direction Movement		Through		Left	Through	Right	Left	Through	Right		Through	Right
Direction Movement V/C Ratio		Through 0.03		Left	Through 	Right	Left	Through	Right		Through	Right
Direction Movement V/C Ratio Delay (sec)		Through		Left	Through	Right	Left	Through	Right		Through	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		Through 0.03 22.8		Left 	Through 	Right 	Left 	Through 	Right 		Through 	Right
Condition Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS		Through 0.03 22.8 C 22.8		Left 	Through 	Right 	Left 	Through 	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec)		Through 0.03 22.8 C 22.8		Left 	Through 	Right 0	Left 	Through 	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec)		Through 0.03 22.8 C 22.8		Left 	Through 	Right 0	Left 	Through 	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition		Through 0.03 22.8 C 22.8 C		Left 	Through NO BUII	Right 0	.2 A	Through ARISON	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction		Through 0.03 22.8 C 22.8 C		Left 	Through NO BUII Westbound	Right 0 //	.2 A	Through ARISON Northbounc	Right		Through Southbound	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction		Through 0.03 22.8 C 22.8 C		Left 	Through NO BUII	Right 0	.2 A	Through ARISON	Right 		Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio	 Left	Through 0.03 22.8 C 22.8 C Eastbound Through -0.02	Right	Left Left	Through NO BUII Westbound	Right 0 // .D TO BU Right 	.2 A	Through ARISON Northbounc	Right	 Left	Through Southbounc Through 	Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec)	 Left 	Through 0.03 22.8 C 22.8 C Eastbound Through -0.02 -0.1	 Right 	Left Left 	Through MO BUII Westbound Through 	Right 0 // .D TO BU Right 	.2 A Left .2 A Left 	Through ARISON Northbounc Through	Right	 Left 	Southbound Through	Right Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec) Overall LOS Condition Direction Movement V/C Ratio Delay (sec) LOS	 Left	Through 0.03 22.8 C 22.8 C Eastbound Through -0.02 -0.1 	Right	Left Left	Through NO BUIL Westbound Through	Right 0 // .D TO BU Right 	.2 A Left .2 A LD COMP	Through Morthbounc Through	Right	 Left	Southbound Through	Right 1 Right
Direction Movement V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS Overall Delay (sec)	 Left 	Through 0.03 22.8 C 22.8 C Eastbound Through -0.02 -0.1	 Right 	Left Left 	Through MO BUII Westbound Through 	Right 0 // .D TO BU Right 	.2 A Left .2 A Left 	Through ARISON Northbounc Through	Right	 Left 	Southbound Through	Right Right

LOS Table 4S

Intersection								Neck Road							
Control Type				S	top Signs p				es						
Time Period						Saturday	Peak Hou	r							
Condition						EXIS	TING								
Direction		Eastbound			Westbound			Northbound		Southbound					
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right			
V/C Ratio	0.01						0.00								
Delay (sec)	22.4						9.9								
LOS	C						A								
Approach Delay (sec)	0														
Approach LOS		C 9.9 C A													
Overall Delay (sec) Overall LOS		0.0 A													
0															
Condition	_	NO BUILD Eastbound Westbound Northbound									Quality is a second				
Direction	1.4	Eastbound	Dist	1.4		Dist	1.4			Southbound					
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right			
V/C Ratio	0.01						0.00								
Delay (sec)	23.3						10.00								
LOS	20.0 C						A								
Approach Delay (sec)	C	23.3					~	10.0							
Approach LOS		23.3 C						A							
Appidacii 200		C						~							
Overall Delay (sec) Overall LOS		0.0 A													
Condition						BU	ILD								
Direction		Eastbound			Westbound			Northbound			Southbound				
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right			
V/C Ratio							0.00								
Delay (sec)							10.2								
LOS							В								
Approach Delay (sec)							1	10.2		1					
Approach LOS								В							
Overall Delay (sec) Overall LOS	0.0 A														
						D TO F									
Condition		Feethermd					ILD COMF				Cauthhaurrd				
Direction		Eastbound			Westbound			Northbound			Southbound				

Condition		NO BUILD TO BUILD COMPARISON											
Direction		Eastbound			Westbound			Northbound			Southbound		
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right	
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS		 			 		0.00 0.20 	 0.2 			 		
Overall Delay (sec) Overall LOS							.0						

Note: Build condition: the driveway will become entrance only.

LOS Table 5S

Intersection						Drive at N									
Control Type				S	top Signs p				es						
Time Period						Saturday	Peak Hou	r							
Condition						EXIS	TING								
Direction		Eastbound			Westbound			Northbound	1		Southbound	outhbound			
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right			
		5	<u> </u>		5	<u> </u>		5	J		<u> </u>	J			
V/C Ratio		0.19					0.01								
Delay (sec)		22.3					9.8								
LOS		С					Α								
Approach Delay (sec)	22.3 9.8														
Approach LOS		С						А							
Overall Delay (sec) Overall LOS		1.2 A													
Condition		NO BUILD													
Condition Direction											Southbound				
Movement	Left	Through	Right	Left	Through	Right	Northbound Left Through Right			Left	Right				
MOVEMENT	LEIL	mough	raynt	LCIL	mough	Night	Len	mough	Night	LEIL	Through	ruyfit			
V/C Ratio		0.17					0.01								
Delay (sec)		22.3					9.9								
LOS		C					A								
Approach Delay (sec)		22.3						9.9							
Approach LOS		С						A							
Overall Delay (sec) Overall LOS	1.0 A														
Condition							ILD								
Direction		Eastbound			Westbound			Northbound	1		Southbound				
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right			
V/C Ratio		0.17					0.01								
Delay (sec)		22.5					9.9								
LOS		22.5 C					9.9 A								
Approach Delay (sec)		22.5					~	9.9							
Approach LOS		C						A.							
Overall Delay (sec)	1.0														
Overall LOS	A														
Condition	NO BUILD TO BUILD COMPARISON														
Direction		Eastbound			Westbound			Northbound			Southbound				
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right			
V/C Ratio		0.00					0.00								
Delay (sec)		0.2					0.00								

 0.00							 	
 0.2					0.00		 	
0.2						0.0		
				0	.0			
				-				
	0.2 0.2	0.2	0.2 0.2	0.2 0.2	0.2 0.2 	0.2 0.00 0.00 0.2	 	

Note: No build condition includes the closure of a commercial driveway on Clover Drive to the west of Middle Neck Road.

LOS Table 6S

Engineering, P.C. Village of Great Neck												
M15-012												
Intersection					Allenwoo	d Road at	Middle	leck Road				
Control Type					Allenwee	Traffic						
Time Period						Saturday	Реак ног	ır				
Condition						EXIS	TING					
Direction		Eastbound			Westbound			Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio					0.58			0.19			0.23	
Delay (sec)					34.5			2.2			2.3	
LOS					C			A			A	
Approach Delay (sec)					34.5			2.2			2.3	
Approach LOS					34.5 C			A			2.3 A	
Approach LOS					C			A			А	
				•		0	.6			•		
Overall Delay (sec) Overall LOS												
Overall LOS						/	4					
Condition Direction		Feethound		r	\A/aathaund	NO E	UILD	Northbound			Southbound	
		Eastbound	D : 11		Westbound	B: 1.1		Northbound	D: 14			
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
V/C Ratio		0.01			0.03			0.25			0.28	
Delay (sec)		24.9			24.1			4.1			4.2	
LOS		C			C			A			A	
Approach Delay (sec)		24.9			24.1			4.1			4.2	
Approach LOS		C			C			A			A	
Approach LOS		C			C			A			A	
Overall Delay (sec)						F	.0					
Overall LOS							.0 A					
Overall LOS						,	1					
-												
Condition Direction		Eastbound		1	Westbound	BU	ILD	Northbound			Southbound	
Movement	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
MOVERIEII	Leit	mough	Tagin	Leit	mough	Ngn	Leil	mough	Aight	Leil	mough	ruyfit
V/C Ratio		0.01			0.03			0.25			0.28	
Delay (sec)		24.9			24.1			4.1			4.2	
LOS		24.9 C			24.1 C			4.1 A			4.2 A	
Approach Delay (sec)		24.9			24.1			4.1			4.2	
Approach LOS		24.9 C			24.1 C			4.1 A				
Approach LUS		U			U			A			A	
						_	-					
Overall Delay (sec)							.0					
Overall LOS						/	4					
	I											
					NO BUI	D TO BU		PARISON				
Condition												
Condition		Easthound		1				Northbound			Southbound	
Direction Movement	Left	Eastbound Through	Right	Left	Westbound Through	Right	Left	Northbound Through	Right	Left	Southbound Through	Right

Direction		Eastboullu			vvestbouriu			Northbound			Southbound	1
Movement	Left	Through	Right									
V/C Ratio Delay (sec) LOS Approach Delay (sec) Approach LOS		0.00 0.0 0.0 			0.00 0.0 0.0 			0.00 0.0 0.0 			0.00 0.0 0.0 	
Overall Delay (sec) Overall LOS							0.0					

Note: No build condition changes compared to existing condition due to the addition of an eastbound approach controlled by the traffic signal.

POTENTIAL LEVEL OF SERVICE IMPACTS BUILD CONDITIONS

01. Middle Neck Road and Old Mill Road/Piccadilly Road	No Impact
02. Middle Neck Road and the North Site Access	Potential Impact
03. Middle Neck Road and Wooleys Lane	No Impact
04. Middle Neck Road and the Millbrook Court	No Impact
05. Middle Neck Road and the South Site Access	No Impact
06. Middle Neck Road and Clover Drive	No Impact
07. Middle Neck Road and Allenwood Road	No Impact

FINDINGS

The highway capacity analysis of the study intersections shows that the development of this property will have no perceptible impact to the level of service on the surrounding roadway network, with the exception of the North Site Access.

MITIGATION

As part of the redevelopment of this project the North Site Access will become the main exit for the complex. The southbound stop line on Middle Neck Road, at the intersection with Wooleys Lane, is located approximately 65 feet south of the driveway. Approximately six vehicles can queue at the signal (within the two southbound lanes) before blocking the site driveway. It is recommended that "Do Not Block The Box" pavement markings and signage be installed at this location. Similar pavement markings were previously installed on Middle Neck Road at the intersection of Cedar Drive, in the Village of Great Neck Estates.

Middle Neck Road generally consists of 2 northbound and 2 southbound travel lanes with parking or shoulder area on the east and west sides. The cross section from curb to curb is approximately 60 feet. The through lanes are approximately 11 feet wide and the parking areas are approximately 8 feet wide.

Some areas of Middle Neck Road (north of Old Mill Road) also provide a raised median island, running along the center.

Middle Neck Road, within the Village of Great Neck, provides northbound left turn lanes at two intersections (Redbrook Road/Grassfield Road and Old Mill Road).

Parking is provided on the west side of Middle Neck Road south of Redbrook Road/Grassfield Road. The lack of parking on the east side of Middle Neck Road in this area allows for the northbound left turn storage lane.

No parking is permitted on either side of Middle Neck Road south of Old Mill Road. The lack of parking within this area of Middle Neck Road allows for the northbound left turn storage lane.

At other intersections on Middle Neck Road, throughout the Village of Great Neck, no turning lanes are provided. Vehicles turning left must wait in the through lane potentially blocking through traffic.

As part of the redevelopment of this project the South Site Access will become the main entrance for the complex. This driveway is anticipated to operate in a similar fashion to the other unsingalized intersections located on Middle Neck Road in proximity to the subject site.

The introduction of a northbound left turn lane at the South Site Access would require the elimination of numerous on street parking spaces. The analysis indicates that less than one vehicle every two minutes will enter the site via a northbound left turn during peak demand. The highway capacity analysis indicates that mitigation is not required at this location.

CONCLUSIONS

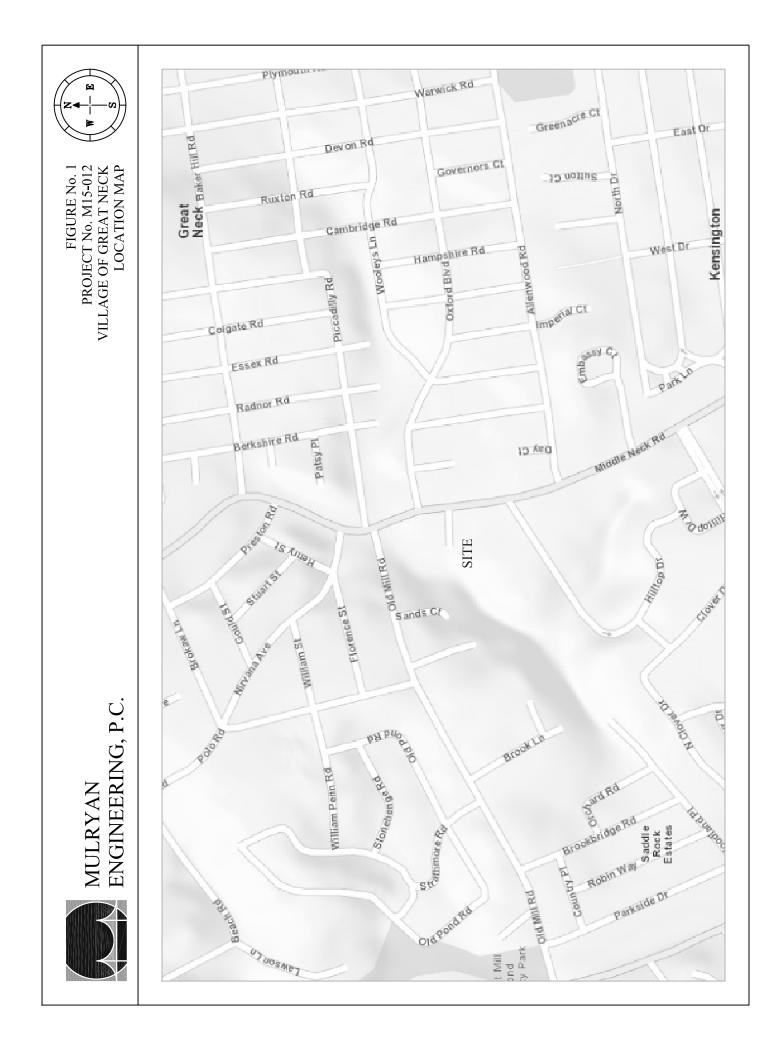
In summary, the subject property is currently developed with a 119 apartment units and 134 parking spaces. The overall project site is 4.35 acres (189,480 square feet).

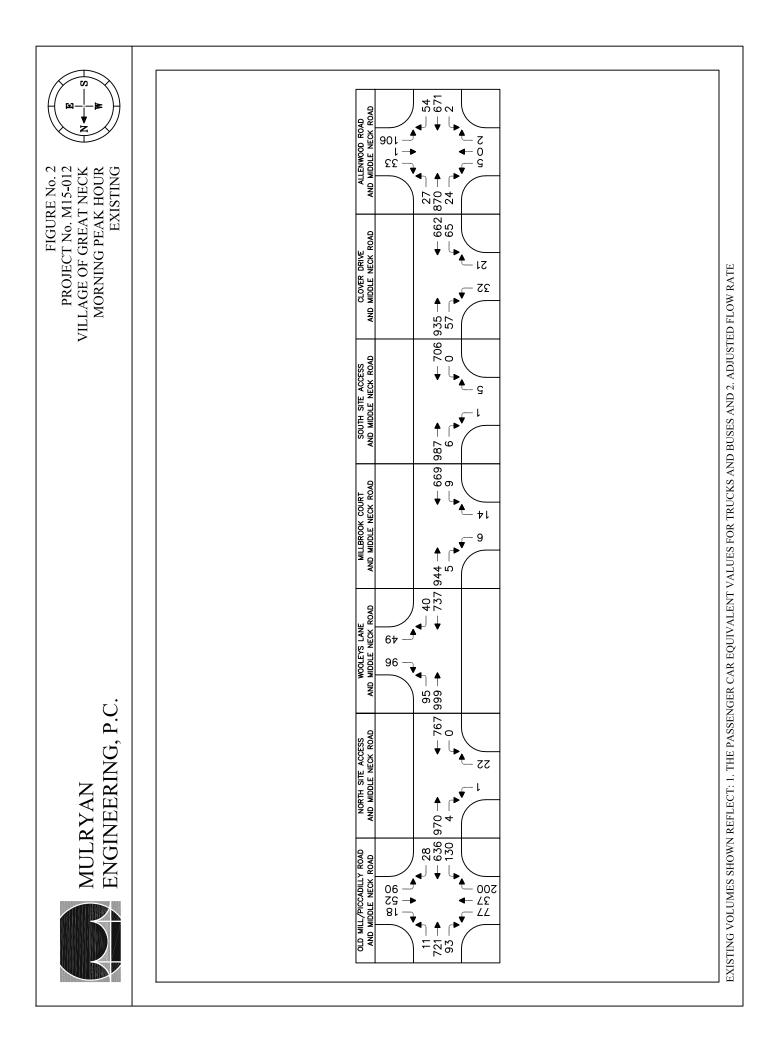
The proposed project will improve the site with a total of 186 unit apartment and 314 parking spaces. The proposed project will result in a net increase of 67 new apartment units.

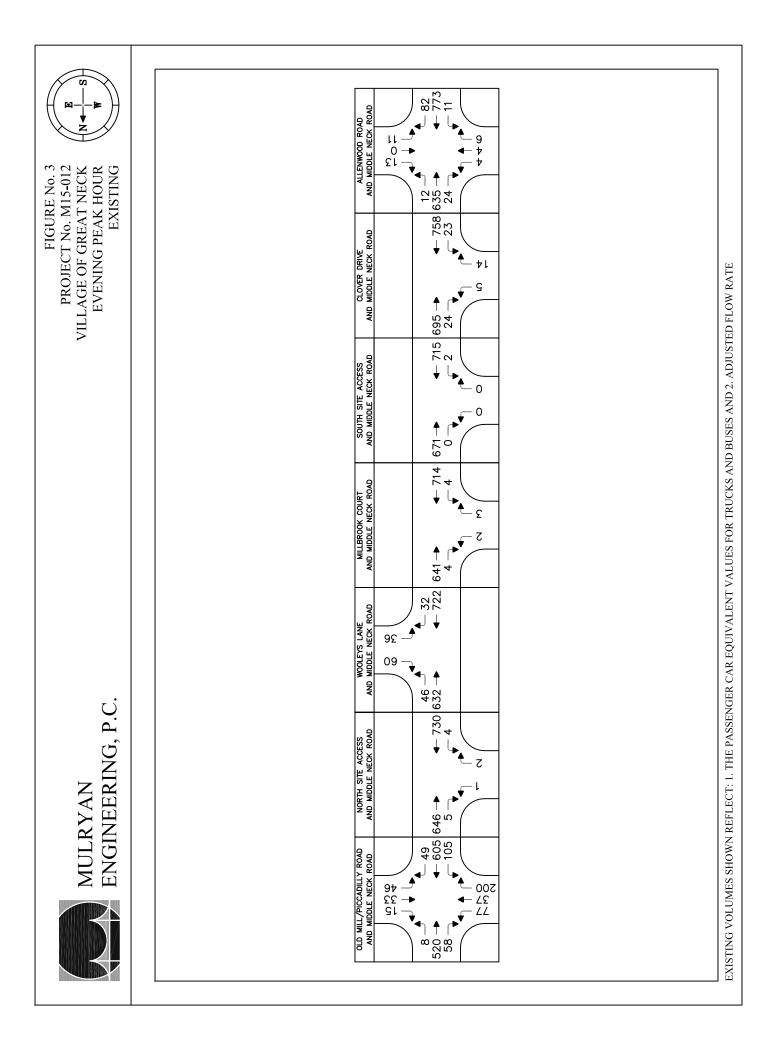
In accordance with the Village of Great Neck zoning requirements, the proposed development requires 314 parking spaces. The proposed site design meets the requirements of the code.

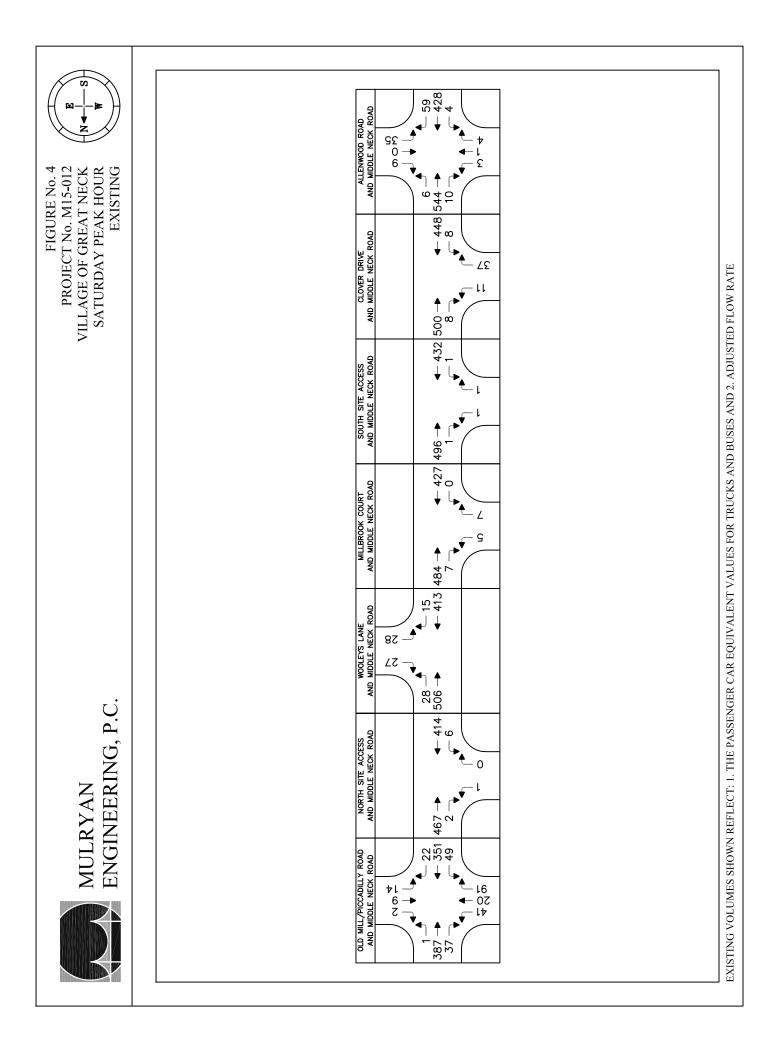
Twenty-two of the 314 on-site parking spaces provided will be in tandem with another parking space. Tandem parking is subject to the review and approval of the Board of Trustees.

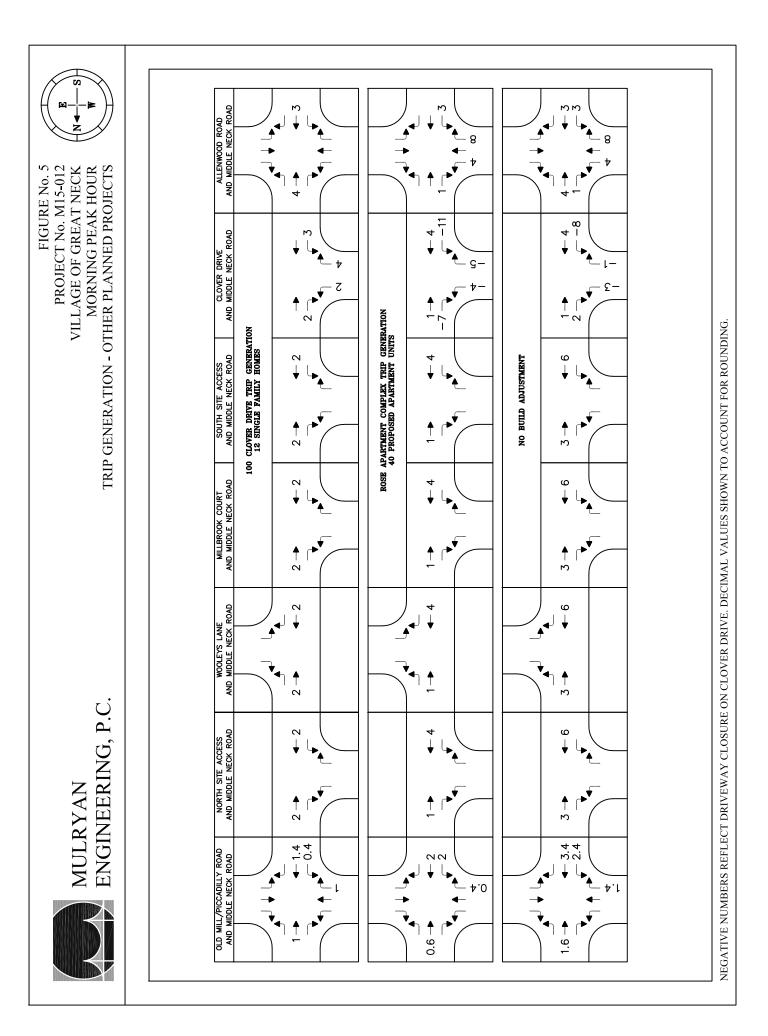
The proposed site will maintain the existing site driveways. The site has one driveway to the north, one in the center of the property and one to the south. The central driveway is known as Millbrook Court.

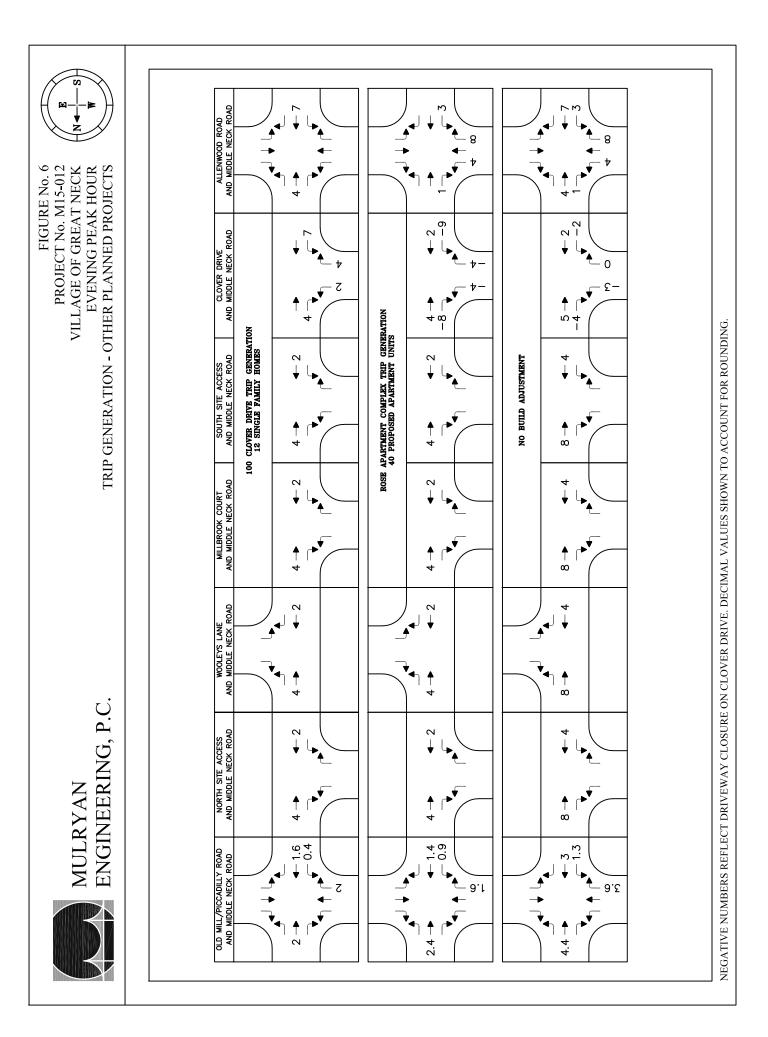

The north and south driveways will be reconfigured. The south driveway will allow entrance only traffic flow from Middle Neck Road. The north driveway will permit exit only traffic flow onto Middle Neck Road. The center driveway/Millbrook Court will maintain two way traffic flow.

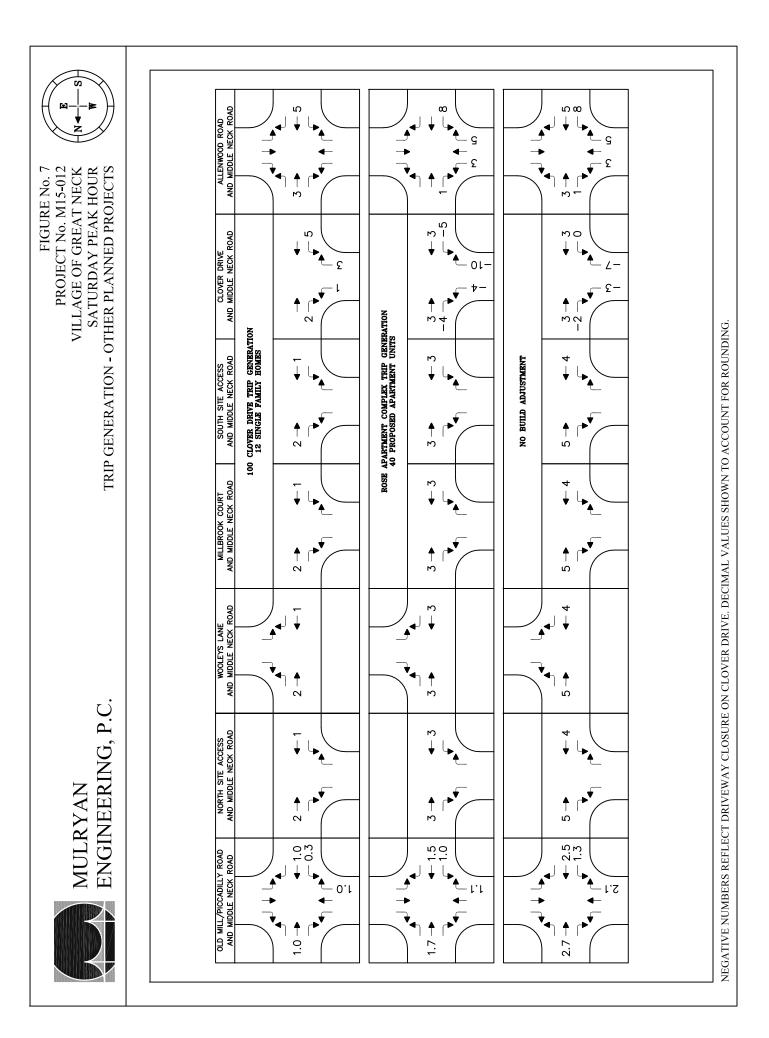

The site access design and parking configuration is illustrated on the site plan set prepared by Newman Design Architects, PLLC. The site access design is subject to the review and approval of the Village of Great Neck Estates and the Nassau County Department of Public Works.

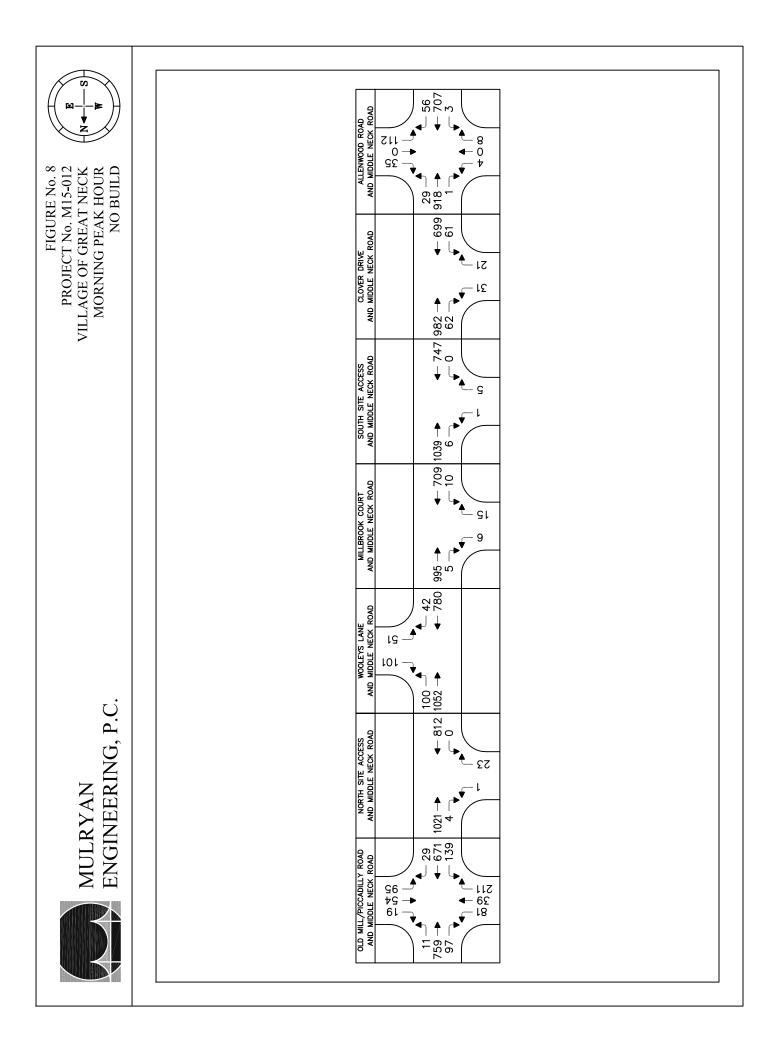

It is recommended that "Do Not Block The Box" pavement markings and signage be installed at the North Site Access. No mitigation measures were found to be warranted at the surrounding study intersections. The Highway Capacity Analysis shows that the traffic generated by the proposed development will have no perceptible impact on the level of service at the surrounding study intersections. Based on our traffic engineering analysis contained within, the proposed development will have no adverse impact to the surrounding roadway network.

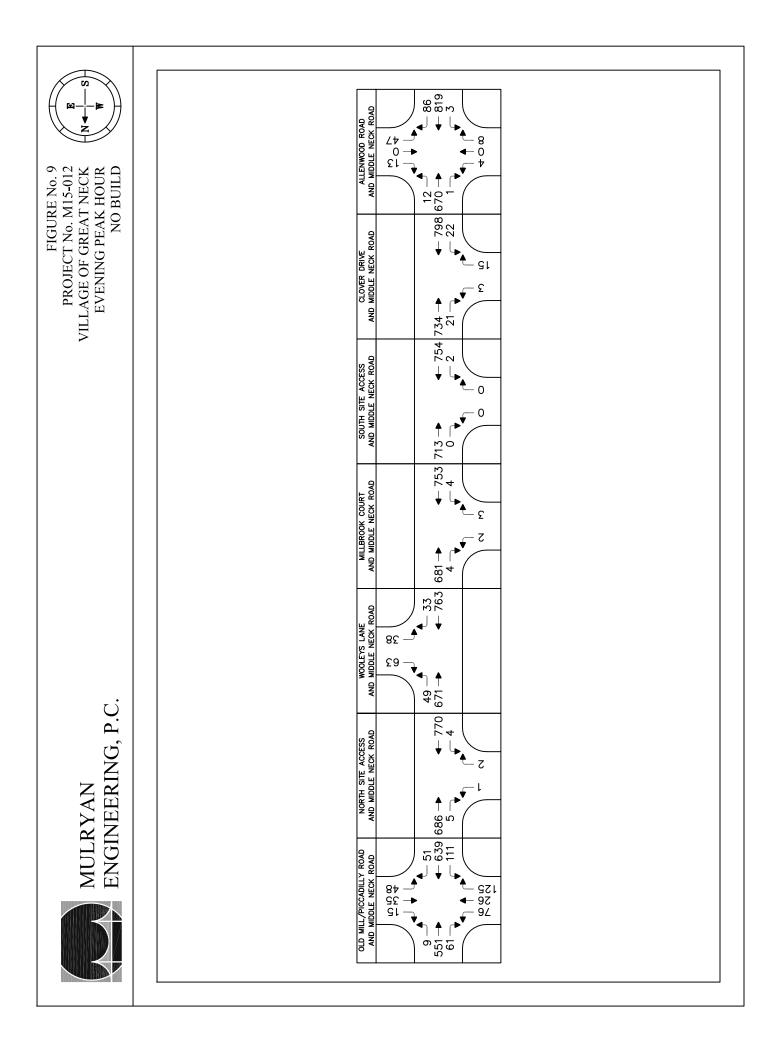

TECHNICAL APPENDIX

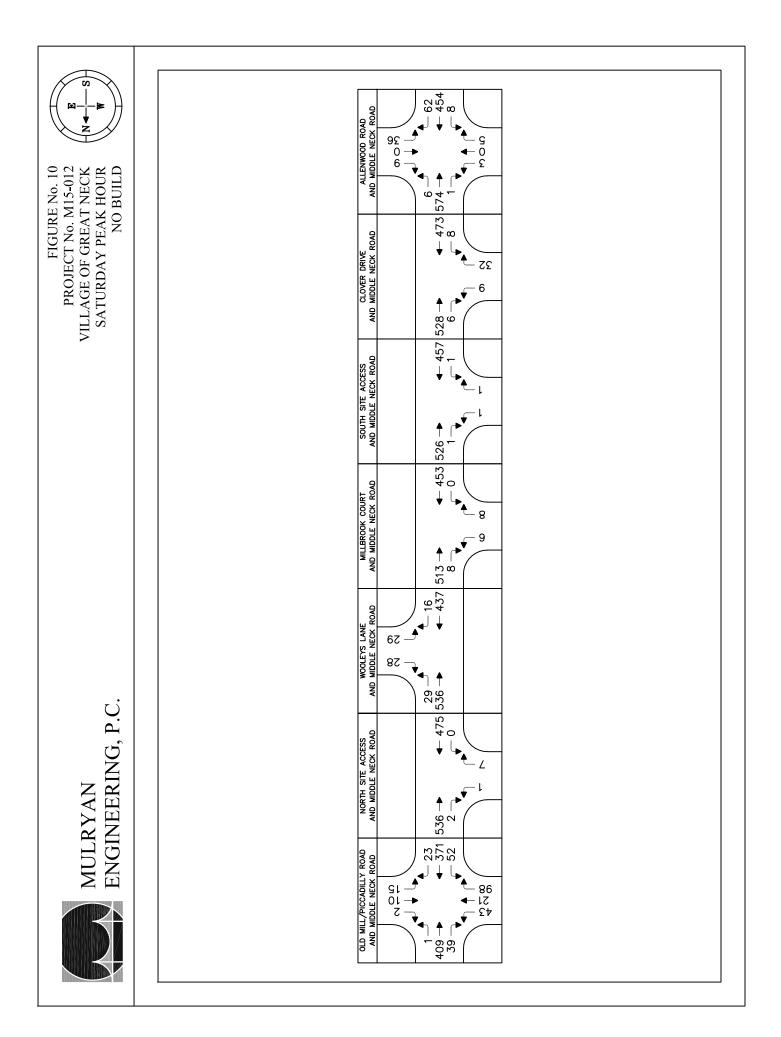

SECTION NO. 01	FIGURES
SECTION NO. 02	INTERSECTION TURNING MOVEMENT COUNTS
SECTION NO. 03	
SECTION NO. 04	INTERSECTION CAPACITY ANAYSIS

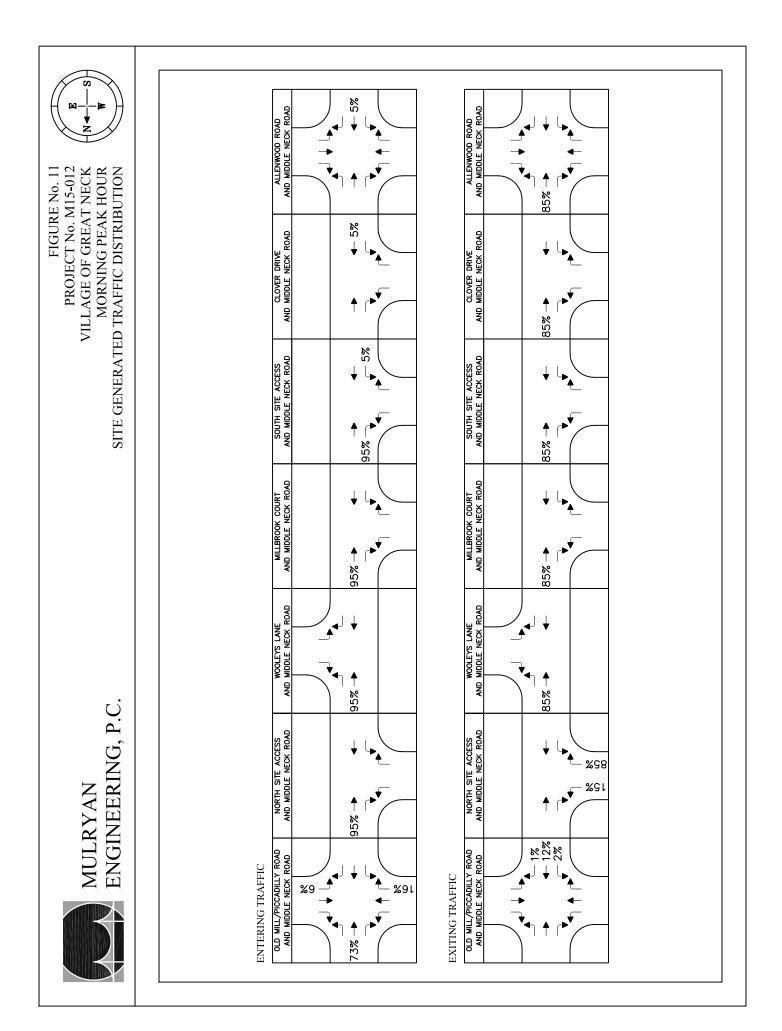


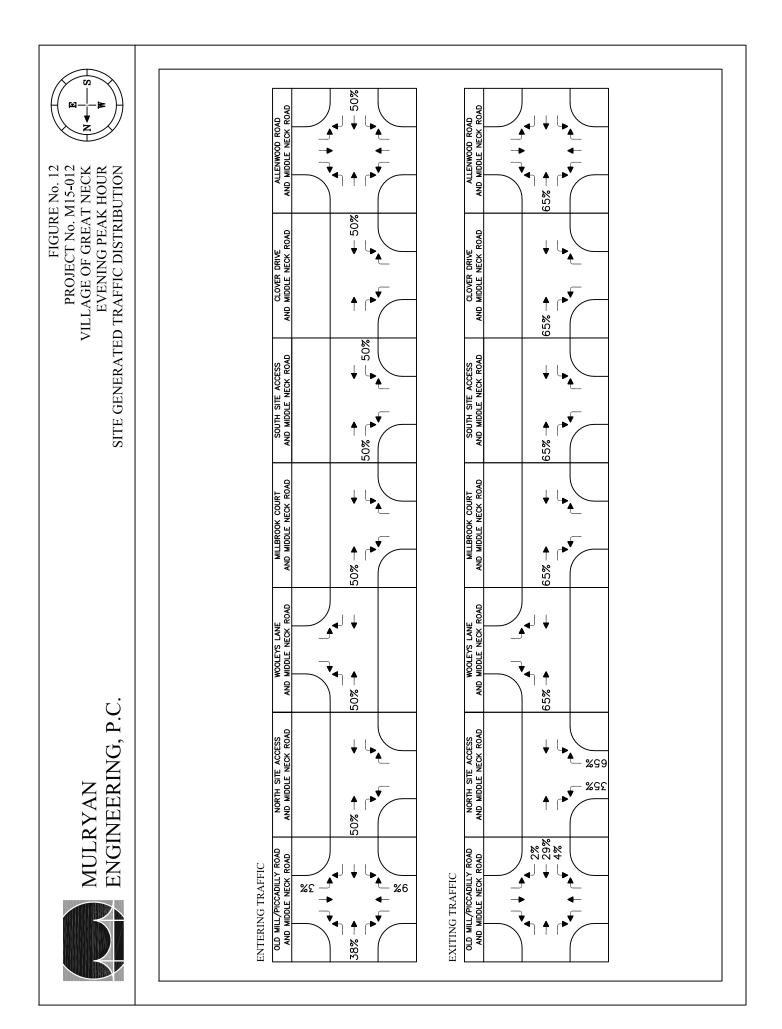


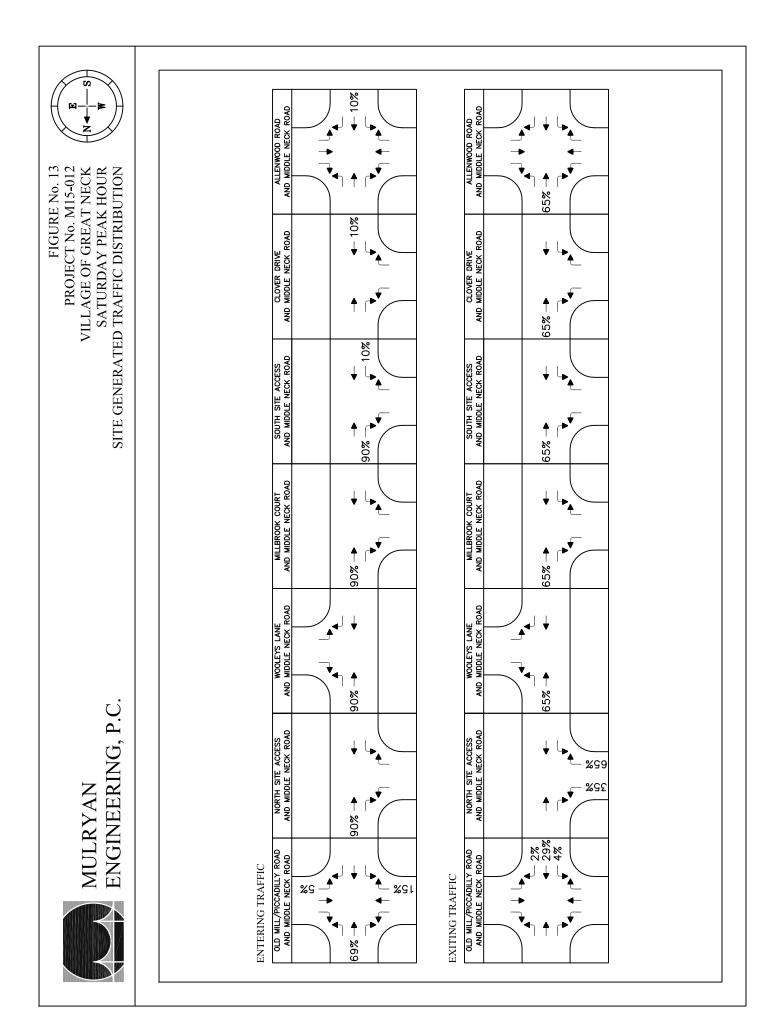


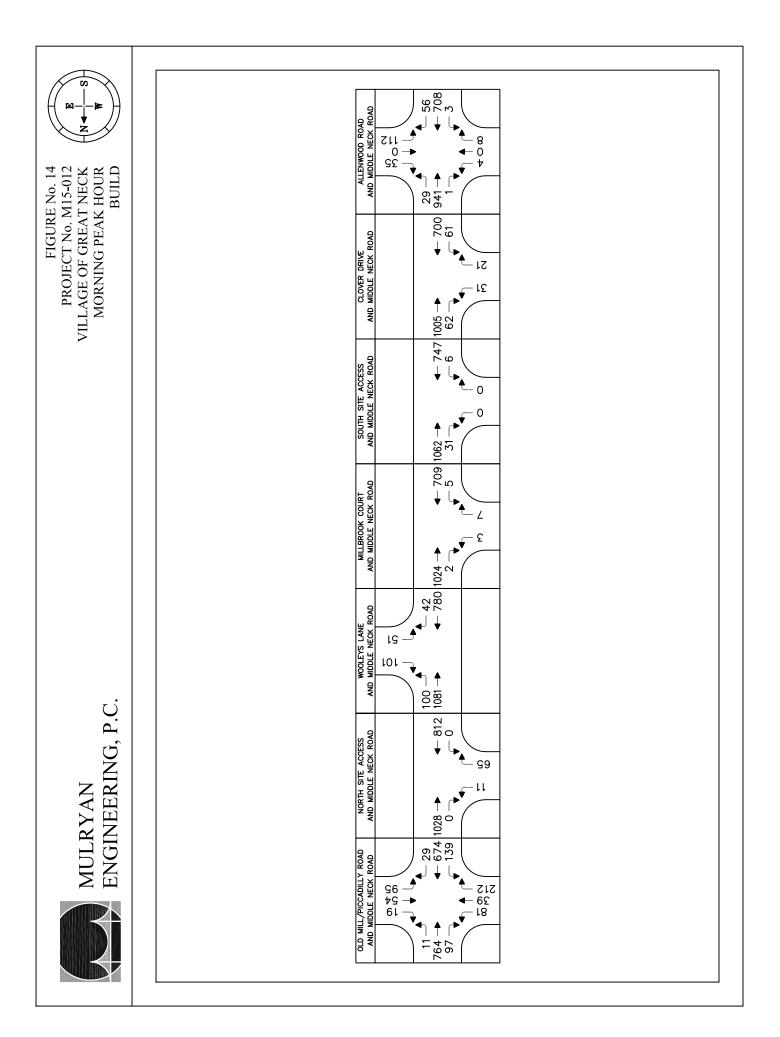


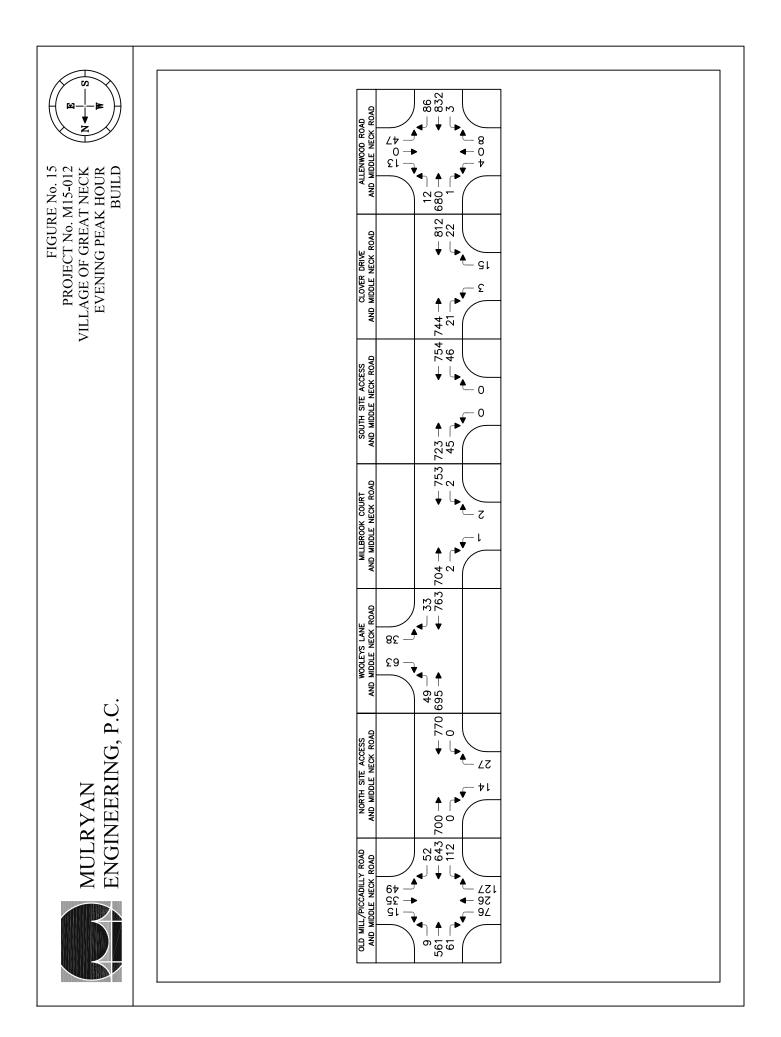


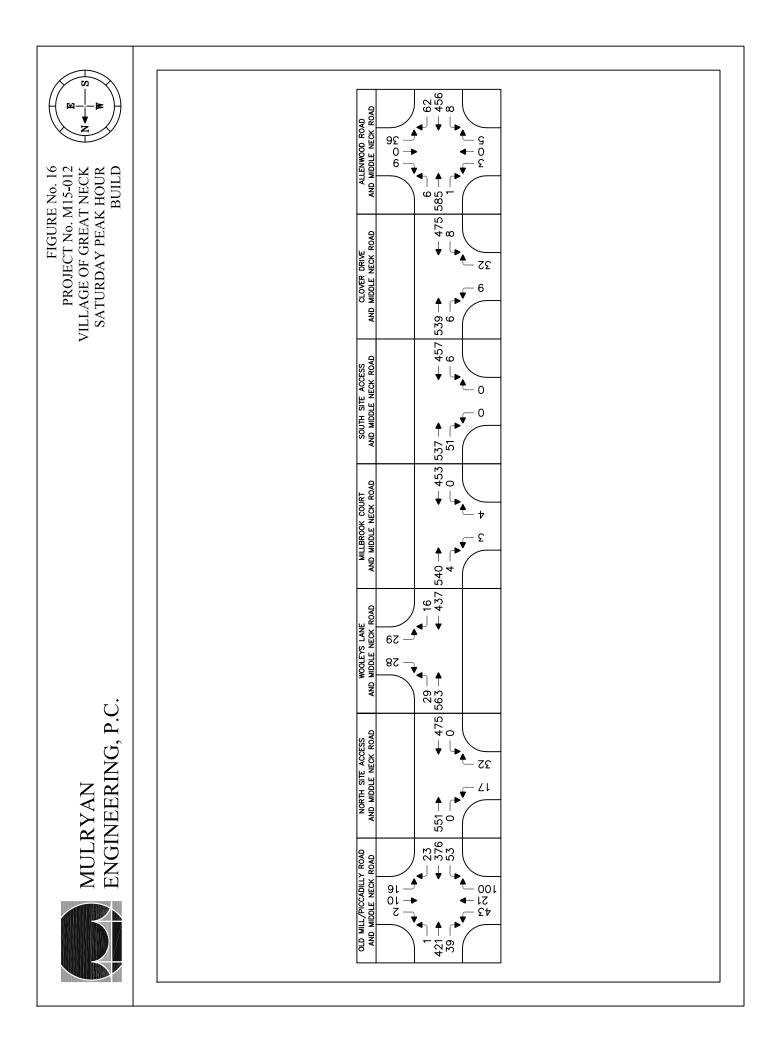












SECTION NO. 02 INTERSECTION TURNING MOVEMENT COUNTS

Mulryan Engi	neering,	P.C.														Study Int	ersectio	on No. 1
Hamlet:	Village of M15-012	Great Neck																
Project No. Old Mill/Piccadill				Southbound				Westbound				Northbound				Eastbound		Vehicle
Middle Neck	Road	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	Total
AM Turning	7:00 AM	0	3	71	2	0	1	8	12	0	11	79	15	0	18	5	2	227
Movement Counts	7:15 AM	0	7	82	0	0	1	7	25	0	6	76	9	0	19	2	8	242
	7:30 AM 7:45 AM	0	19 22	130 150	1 2	0	5 5	10 14	14 21	0	5 2	125 182	30 37	0	40 58	5 8	8 22	392 523
	8:00 AM	Ő	22	196	3	Ő	3	13	24	0	6	114	19	Ő	44	10	21	475
	8:15 AM	0	14	123	3	0	2	6	16	0	10	107	22	0	24	8	13	348
	8:30 AM 8:45 AM	0	16 12	138 155	2 1	0	3 3	9 12	23 23	0	13 16	114 106	22 33	0	32 30	9 11	11 15	392 417
7:00 AM to 7:15 AM to	8:00 AM 8:15 AM	0	51 70	433 558	5 6	0	12 14	39 44	72 84	0	24 19	462 497	91 95	0	135 161	20 25	40 59	1384 1632
7:30 AM to	8:30 AM	0	70	599	9	0	14	44	75	0	23	528	108	0	166	31	64	1738
7:45 AM to	8:45 AM	0	74	607	10	0	13	42	84	0	31	517	100	0	158	35	67	1738
8:00 AM to	9:00 AM	0	64	612	9	0	11	40	86	0	45	441	96	0	130	38	60	1632
	13.00 P		^	440	2	0	^	<u>^</u>	,	0	10	440	45	0		,	45	217
Midday Turning Movement Counts	12:00 PM 12:15 PM	0	9 12	110 118	3 1	0	3 1	3 3	4 11	0	12 2	113 116	15 17	0	29 19	1 2	15 13	317 315
	12:30 PM	0	13	117	0	0	2	4	6	0	9	103	17	0	20	4	27	322
	12:45 PM	0	17	118	1	0	1 1	11	6	0	5	118	16	0	19	1 3	19	332
	1:00 PM 1:15 PM	0	14 15	126 119	3 2	0	1	4 8	10 5	0	8 10	134 128	16 15	0	27 24	3	18 21	364 353
	1:30 PM	0	7	129	1	0	2	1	4	0	9	143	10	0	18	2	12	338
	1:45 PM	0	21	113	6	0	3	2	7	0	3	139	20	0	15	3	21	353
12:00 PM to	1:00 PM	0	51	463	5	0	7	21	27	0	28	450	65	0	87	8	74	1286
12:15 PM to	1:15 PM	0	56	479	5	0	5	22	33	0	24	471	66	0	85	10	77	1333
12:30 PM to 12:45 PM to	1:30 PM 1:45 PM	0	59 53	480 492	6 7	0	6 6	27 24	27 25	0	32 32	483 523	64 57	0	90 88	12 10	85 70	1371 1387
1:00 PM to	2:00 PM	0	57	487	12	0	8	15	26	0	30	544	61	0	84	12	72	1408
PM Turning	4:00 PM	0	18	123	4	0	5	6	18	0	20	143	27	0	28	11	13	416
Movement Counts	4:15 PM 4:30 PM	0	15 18	126 122	4 4	0	2 1	5 6	10 13	0	9 10	121 125	19 27	0	26 41	6 8	23 25	366 400
	4:45 PM	0	11	122	3	0	4	6	12	0	11	150	16	0	21	3	15	372
	5:00 PM	0	14	123	3	0	4	4	11	0	10	148	15	0	26	4	21	383
	5:15 PM 5:30 PM	0	17 15	137 122	1 1	0	5 4	10 9	8 12	0	15 9	143 130	28 26	0	19 36	6 8	17 17	406 389
	5:45 PM	0	10	119	3	0	1	9	13	0	13	162	32	0	30	6	15	413
4:00 PM to	5:00 PM	0	62	491	15	0	12	23	53	0	50	539	89	0	116	28	76	1554
4:15 PM to	5:15 PM	0	58	491	14	0	11	21	46	0	40	544	77	0	114	21	84	1521
4:30 PM to	5:30 PM	0	60	502	11	0	14	26	44	0	46	566	86	0	107	21	78	1561
4:45 PM to 5:00 PM to	5:45 PM 6:00 PM	0	57 56	502 501	8 8	0	17 14	29 32	43 44	0	45 47	571 583	85 101	0	102 111	21 24	70 70	1550 1591
Saturday Turning	12:00 PM	0	7	99	1	0	2	4	7	0	7	102	7	0	11	1	6	254
Movement Counts	12:15 PM	0	8	84	3	0	1	1	4	0	6	73	7	0	17	3	8	215
	12:30 PM 12:45 PM	0	7 12	101 95	1	0	0	1 2	3 3	0	9 8	82 89	9 9	0	22 22	6 4	7 11	248 255
	1:00 PM	0	14	96	0	0	2	2	4	0	1	88	13	0	22	4	10	256
	1:15 PM	0	3	82	0	0	0	4	4	0	3	80	16	0	22	5	12	231
	1:30 PM 1:45 PM	0	7 11	78 86	1 1	0	0 2	4 0	4 8	0	4 5	76 73	9 13	0	16 26	7 1	6 11	212 237
12:00 DM																		
12:00 PM to 12:15 PM to	1:00 PM 1:15 PM	0	34 41	379 376	5 4	0	3	8 6	17 14	0	30 24	346 332	32 38	0	72 83	14 17	32 36	972 974
12:30 PM to	1:30 PM	0	36	374	1	0	2	9	14	0	21	339	47	0	88	19	40	990
12:45 PM to	1:45 PM	0	36	351	1	0	2	12	15	0	16	333	47	0	82	20	39 20	954
1:00 PM to	2:00 PM	0	35	342	2	0	4	10	20	0	13	317	51	0	86	17	39	936
Peak Hour PHF	Start Time																	
AM 0.831	7:30 AM	0	77	599	9	0	15	43	75	0	23	528	108	0	166	31	64	1738
Midday 0.967	1:00 PM	0	57	487	12	0	8	15	26	0	30	544	61	0	84	12	72	1408
PM 0.963 Saturday 0.967	5:00 PM 12:30 PM	0	56 36	501 374	8 1	0	14 2	32 9	44 14	0	47 21	583 339	101 47	0	111 88	24 19	70 40	1591 990
	12.50 T M	5	50	2/7	•		2	,	. 7		21	~~~	.,	5	50	.,	.0	,,,,,

Mulryan	ı Engir																Study Inte	ersectio	on No. 2
Hamlet: Project No.		Village of M15-012	Great Neck																
North	h Site Acco	ess at			Southbound				Westbound				Northbound				Eastbound		Vehicle
Midd	dle Neck F	Road	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	Total
AM Tu		7:00 AM	0	0	93	0	0	0	0	0	0	0	86	0	0	1	0	0	180
Movement	t Counts	7:15 AM	0	1	105 165	0 0	0	0 0	0 0	0	0	0 0	84 157	1 0	0	1 5	0 0	1 0	193
		7:30 AM 7:45 AM	0	2	223	0	0	0	0	0	0	0	209	0	0	7	0	0	328 441
		8:00 AM	0	0	257	0	0	0	0	0	0	0	127	0	0	4	0	1	389
		8:15 AM	0	0	150	0	0	0	0	0	0	0	136	0	0	2	0	0	288
		8:30 AM 8:45 AM	0	1 3	182 192	0 0	0	0 0	0 0	0	0	0 0	132 153	3 1	0	2	0 0	0 1	320 354
		0.457101	Ŭ	U	102	0	Ŭ	0	Ū	U	0	0	100	·	Ű		0		551
7:00 AM	to	8:00 AM	0	4	586	0	0	0	0	0	0	0	536	1	0	14	0	1	1142
7:15 AM 7:30 AM	to to	8:15 AM 8:30 AM	0	4	750 795	0 0	0	0 0	0 0	0	0	0 0	577 629	1 0	0	17 18	0	2 1	1351 1446
7:45 AM	to	8:45 AM	0	3	812	0	0	0	0	0	0	0	604	3	0	15	0	1	1438
8:00 AM	to	9:00 AM	0	4	781	0	0	0	0	0	0	0	548	4	0	12	0	2	1351
Midday T		12:00 PM	0	0	137	0	0	0	0	0	0	0	129	1	0	0	0	0	267
Movement	t Counts	12:15 PM	0	3	139	0	0	0	0	0	0	0	132	1	0	1	0	0	276
1		12:30 PM 12:45 PM	0	0	137 142	0 0	0	0 0	0 0	0	0	0 0	119 147	1 1	0	0 2	0 0	1 1	258 293
		1:00 PM	Ő	1	149	õ	Ő	0	0	0	0	0	142	0	0	3	0	0	295
		1:15 PM	0	0	145	0	0	0	0	0	0	0	148	1	0	0	0	0	294
		1:30 PM 1:45 PM	0	0 2	144 133	0 0	0	0 0	0 0	0 0	0	0 0	160 154	0 0	0	3 0	0 0	0 1	307 290
1		1:45 PM	0	2	155	0	0	0	0	U	0	0	134	0	0	0	0	1	290
12:00 PM	to	1:00 PM	0	3	555	0	0	0	0	0	0	0	527	4	0	3	0	2	1094
12:15 PM	to	1:15 PM	0	4	567	0	0	0	0	0	0	0	540	3	0	6	0 0	2 2	1122
12:30 PM 12:45 PM	to to	1:30 PM 1:45 PM	0	1	573 580	0 0	0	0	0 0	0	0	0 0	556 597	3 2	0	5 8	0	2	1140 1189
1:00 PM	to	2:00 PM	0	3	571	0	0	0	0	0	0	0	604	1	0	6	0	1	1186
<u> </u>							-												
PM Tur	rning	4:00 PM	0	3	156	0	0	0	0	0	0	0	172	3	0	1	0	0	335
Movement		4:15 PM	0	2	149	0	0	0	0	0	0	0	143	2	0	3	0	0	299
ĺ		4:30 PM	0	3	155	0	0	0	0	0	0	0	150	0	0	1	0	0	309
		4:45 PM 5:00 PM	0	1 2	146 151	0 0	0	0 0	0 0	0	0	0 0	186 163	1 0	0	3 0	0 0	0 0	337 316
		5:15 PM	0	3	159	0	0	0	0	0	0	0	181	2	0	1	0	1	347
		5:30 PM	0	0	161	0	0	0	0	0	0	0	166	1	0	1	0	0	329
1		5:45 PM	0	0	151	0	0	0	0	0	0	0	193	1	0	0	0	0	345
4:00 PM	to	5:00 PM	0	9	606	0	0	0	0	0	0	0	651	6	0	8	0	0	1280
4:15 PM	to	5:15 PM	0	8	601	0	0	0	0	0	0	0	642	3	0	7	0	0	1261
4:30 PM 4:45 PM	to	5:30 PM 5:45 PM	0	9 6	611 617	0 0	0	0	0 0	0	0	0 0	680 696	3 4	0	5 5	0 0	1	1309 1329
4.45 PM 5:00 PM	to to	6:00 PM	0	5	622	0	0	0	0	0	0	0	703	4	0	2	0	1	1329
L																			
Saturday T	Turning	12:00 PM	0	0	105	0	0	0	0	0	0	0	94	0	0	0	0	0	199
Movement		12:15 PM	0	0	110	0	0	0	0	0	0	0	87	0	0	3	0	1	201
		12:30 PM	0	0	119	0	0	0	0	0	0	0	95	0	0	1	0	0	215
		12:45 PM 1:00 PM	0	2 0	111 127	0 0	0	0 0	0	0	0	0 0	119 113	0 0	0	1	0 0	0 0	233 241
		1:00 PM 1:15 PM	0	1	103	0	0	0	0	0	0	0	86	1	0	2	0	0	193
		1:30 PM	0	0	107	0	0	0	0	õ	0	0	82	0	0	1	0	0	190
l		1:45 PM	0	1	88	0	0	0	0	0	0	0	118	0	0	0	0	0	207
12:00 PM	to	1:00 PM	0	2	445	0	0	0	0	0	0	0	395	0	0	5	0	1	848
12:15 PM	to	1:15 PM	0	2	467	0	0	0	0	0	0	0	414	0	0	6	0	1	890
12:30 PM	to	1:30 PM	0	3	460	0	0	0	0	0	0	0	413	1	0	5	0	0	882
12:45 PM 1:00 PM	to to	1:45 PM 2:00 PM	0	3 2	448 425	0 0	0	0 0	0 0	0 0	0	0 0	400 399	1 1	0	5 4	0 0	0 0	857 831
<u> </u>								-				-							
Peak Hour	PHF	Start Time																	
AM	0.820	7:30 AM	0	3	795	0	0	0	0	0	0	0	629	0	0	18	0	1	1446
Midday	0.968	12:45 PM		1	580	0	0	0	0	0	0	0	597	2	0	8	0	1	1189
PM Saturday	0.963 0.923	5:00 PM 12:15 PM	0	5 2	622 467	0 0	0	0 0	0 0	0 0	0	0 0	703 414	4 0	0	2 6	0 0	1	1337 890
	0.740	12.13 1 141		-	.57	~		0		5	3	0			5	0		•	070

Mulryan Engi																Study Int	ersectio	on No. 3
Hamlet: Project No.	Village of M15-012	Great Neck																
Wooleys Lan Middle Neck I	ie at	U-Turn	Right	Southbound Through	Left	U-Turn	Right	Westbound Through	Left	U-Turn	Right	Northbound Through	Left	U-Turn	Right	Eastbound Through	Left	Vehicle Total
AM Turning	7:00 AM	0	0	86	15	0	7	0	9	0	5	98	0	0	0	0	0	220
Movement Counts	7:15 AM 7:30 AM	0	0	113 181	13 12	0	13 25	0	19 9	0	5 3	90 141	0 0	0	0 0	0 0	0 0	253 371
	7:45 AM	0	0	226	28	0	34	0	14	0	19	183	0	0	0	0	0	504
	8:00 AM 8:15 AM	0	0 0	239 153	24 12	0	8 10	0	8 8	0	4 6	124 142	0 0	0	0 0	0	0 0	407 331
	8:30 AM	0	0	188	8	0	9	0	12	0	5	136	0	0	0	0	0	358
	8:45 AM	0	0	194	11	0	21	0	16	0	4	146	0	0	0	0	0	392
7:00 AM to	8:00 AM	0	0	606	68	0	79	0	51	0	32	512	0	0	0	0	0	1348
7:15 AM to 7:30 AM to	8:15 AM 8:30 AM	0	0	759 799	77 76	0	80 77	0	50 39	0	31 32	538 590	0 0	0	0 0	0	0 0	1535 1613
7:45 AM to	8:45 AM	0	0	806	72	0	61	0	42	0	34	585	0	0	0	0	0	1600
8:00 AM to	9:00 AM	0	0	774	55	0	48	0	44	0	19	548	0	0	0	0	0	1488
Midday Turning	12:00 PM	0	0	138	7	0	10	0	4	0	3	125	0	0	0	0	0	287
Movement Counts	12:15 PM 12:30 PM	0	0 0	138 150	11 6	0	10 11	0	7 5	0	10 6	131 107	0 0	0	0 0	0 0	0 0	307 285
	12:45 PM	0	0	138	10	0	2	0	4	0	7	152	0	0	0	0	0	313
	1:00 PM	0	0 0	160 138	6 9	0	7 8	0	5 9	0	19 4	141 151	0 0	0	0 0	0 0	0 0	338 319
	1:15 PM 1:30 PM	0	0	152	8	0	11	0	3	0	3	150	0	0	0	0	0	319
	1:45 PM	0	0	124	8	0	7	0	6	0	4	154	0	0	0	0	0	303
12:00 PM to	1:00 PM	0	0	564	34	0	33	0	20	0	26	515	0	0	0	0	0	1192
12:15 PM to 12:30 PM to	1:15 PM 1:30 PM	0	0	586 586	33 31	0	30 28	0 0	21 23	0	42 36	531 551	0 0	0	0 0	0 0	0 0	1243 1255
12:45 PM to	1:45 PM	0	0	588	33	0	28	0	21	0	33	594	0	0	0	0	0	1297
1:00 PM to	2:00 PM	0	0	574	31	0	33	0	23	0	30	596	0	0	0	0	0	1287
PM Turning	4:00 PM	0	0	156	17	0	20	0	7	0	3	171	0	0	0	0	0	374
Movement Counts	4:15 PM 4:30 PM	0	0 0	155 155	12 8	0	7 9	0	5 9	0	6 9	140 148	0 0	0	0	0 0	0 0	325 338
	4:45 PM	0	0	140	14	0	15	0	6	0	8	182	0	0	0	0	0	365
	5:00 PM 5:15 PM	0	0 0	145 150	10 11	0	11 25	0	11 5	0	7 11	152 174	0 0	0	0	0 0	0 0	336 376
	5:30 PM	0	0	164	11	0	11	0	7	0	5	159	0	0	0	0	0	357
	5:45 PM	0	0	141	12	0	10	0	11	0	7	201	0	0	0	0	0	382
4:00 PM to	5:00 PM	0	0	606	51	0	51	0	27	0	26	641	0	0	0	0	0	1402
4:15 PM to 4:30 PM to	5:15 PM 5:30 PM	0	0	595 590	44 43	0	42 60	0	31 31	0	30 35	622 656	0 0	0	0 0	0	0 0	1364 1415
4:45 PM to	5:45 PM	0	0	599	46	0	62	0	29	0	31	667	0	0	0	0	0	1434
5:00 PM to	6:00 PM	0	0	600	44	0	57	0	34	0	30	686	0	0	0	0	0	1451
Saturday Turning	12:00 PM	0	0	112	2	0	6	0	4	0	2	106	0	0	0	0	0	232
Movement Counts	12:15 PM 12:30 PM	0	0	110 115	4 8	0	6 10	0	6 6	0	1 2	77 95	0	0	0	0	0 0	204 236
	12:45 PM	0	0	113	6	0	7	0	9	0	3	101	0	0	0	0	0	239
	1:00 PM 1:15 PM	0	0	133 112	4 8	0	4 4	0	5 6	0	4 5	104 86	0 0	0	0	0	0 0	254 221
	1:30 PM	0	0	97	8	0	8	0	4	0	5	82	0	0	0	0	0	204
	1:45 PM	0	0	117	8	0	5	0	4	0	2	83	0	0	0	0	0	219
12:00 PM to 12:15 PM to	1:00 PM	0	0 0	450 471	20	0	29 27	0 0	25 26	0 0	8 10	379 377	0 0	0	0	0 0	0 0	911 933
12:30 PM to	1:15 PM 1:30 PM	0	0	473	22 26	0	27 25	0	26 26	0	14	386	0	0	0	0	0	950
12:45 PM to 1:00 PM to	1:45 PM 2:00 PM	0	0 0	455 459	26 28	0	23 21	0 0	24 19	0	17 16	373 355	0 0	0	0 0	0 0	0 0	918 898
	2.001 14		U	7.77	20		21	3	17	0	10	555	0	0	U	5	5	070
Peak Hour PHF	Start Time																	
AM 0.800 Midday 0.959	7:30 AM 12:45 PM	0	0 0	799 588	76 33	0	77 28	0 0	39 21	0	32 33	590 594	0	0	0 0	0 0	0 0	1613 1297
PM 0.950	5:00 PM	0	0	600	44	0	57	0	34	0	30	686	0	0	0	0	0	1451
Saturday 0.935	12:30 PM	0	0	473	26	0	25	0	26	0	14	386	0	0	0	0	0	950
L		1				I												

Mulryan Engir																Study Int	ersectio	on No. 4
Hamlet: Project No.	Village of M15-012	Great Neck																
Millbrook Cou Middle Neck F		U-Turn	Right	Southbound Through	Left	U-Turn	Right	Westbound Through	Left	U-Turn	Right	Northbound Through	Left	U-Turn	Right	Eastbound Through	Left	Vehicle Total
AM Turning Movement Counts	7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM	0 0 0 0 0 0 0 0 0 0 0	0 1 1 2 0 1 1 2	93 118 171 220 237 146 193 196	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	83 81 143 179 118 137 130 139	0 1 2 4 0 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0	0 1 2 4 2 2 4 2 4 2	0 0 0 0 0 0 0 0 0 0	0 0 3 0 1 1 3	176 202 319 412 357 289 331 344
7:00 AM to 7:15 AM to 7:30 AM to 7:45 AM to 8:00 AM to	8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM	0 0 0 0 0	4 4 4 4	602 746 774 796 772	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	486 521 577 564 524	7 7 8 8 6	0 0 0 0 0	7 9 10 12 10	0 0 0 0 0	3 3 4 5 5	1109 1290 1377 1389 1321
Midday Turning Movement Counts	12:00 PM 12:15 PM 12:30 PM 12:45 PM 1:00 PM 1:15 PM 1:30 PM 1:45 PM	0 0 0 0 0 0 0 0	0 0 1 1 0 2 0	142 142 149 145 149 147 140 132	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	121 134 115 152 147 153 144 152	2 1 0 0 5 2	0 0 0 0 0 0 0 0	0 2 0 3 4 2	0 0 0 0 0 0 0 0	1 0 0 0 0 0 2 1	266 277 267 298 297 303 297 289
12:00 PM to 12:15 PM to 12:30 PM to 12:45 PM to 1:00 PM to	1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM	0 0 0 0	1 2 2 4 3	578 585 590 581 568	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	522 548 567 596 596	4 2 1 5 7	0 0 0 0	2 2 5 7 9	0 0 0 0 0	1 0 2 3	1108 1139 1165 1195 1186
PM Turning Movement Counts	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	0 0 0 0 0 0 0 0	2 1 3 0 2 0 2	144 141 152 138 150 152 160 145	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	162 143 149 180 151 176 157 192	0 1 3 0 1 1 2	0 0 0 0 0 0 0 0	0 1 1 1 0 1	0 0 0 0 0 0 0 0 0	3 2 3 0 1 1 0 0	311 289 307 325 303 332 319 342
4:00 PM to 4:15 PM to 4:30 PM to 4:45 PM to 5:00 PM to	5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM	0 0 0 0	8 6 5 4	575 581 592 600 607	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	634 623 656 664 676	5 5 5 4	0 0 0 0	2 3 3 3 3	0 0 0 0 0	8 6 5 2 2	1232 1224 1267 1279 1296
Saturday Turning Movement Counts	12:00 PM 12:15 PM 12:30 PM 12:45 PM 1:00 PM 1:15 PM 1:30 PM 1:45 PM	0 0 0 0 0 0 0 0	0 6 1 0 0 1 2 0	110 96 123 108 125 100 107 91	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	91 83 93 115 108 87 83 114	0 0 0 0 3 1 2	0 0 0 0 0 0 0 0	1 6 1 0 2 3 1	0 0 0 0 0 0 0 0 0	1 2 1 0 0 0 0	203 193 220 224 233 193 196 208
12:00 PM to 12:15 PM to 12:30 PM to 12:45 PM to 1:00 PM to	1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM	0 0 0 0 0	7 7 2 3 3	437 452 456 440 423	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	382 399 403 393 392	0 0 3 4 6	0 0 0 0 0	8 7 3 5 6	0 0 0 0 0	6 5 3 1 0	840 870 870 846 830
Peak Hour PHF AM 0.843 Midday 0.986 PM 0.947 Saturday 0.933	Start Time 7:45 AM 12:45 PM 5:00 PM 12:15 PM	0 0 0	4 4 7	796 581 607 452	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	564 596 676 399	8 5 4 0	0 0 0 0	12 7 3 7	0 0 0 0	5 2 2 5	1389 1195 1296 870

Mulryan Engir																Study Int	ersectio	on No. 5
Hamlet: Project No.	Village of M15-012	Great Neck																
South Site Acco Middle Neck F	ess at	U-Turn	Right	Southbound Through	Left	U-Turn	Right	Westbound Through	Left	U-Turn	Right	Northbound Through	Left	U-Turn	Right	Eastbound Through	Left	Vehicle Total
AM Turning Movement Counts	7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM	0 0 0 0 0 0 0 0	0 0 2 3 0 0	101 133 185 235 248 154 202	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	100 87 147 187 123 150 140	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 3 2 0 2 0	0 0 0 0 0 0 0 0 0	0 0 0 1 0 0	201 220 335 426 375 306 342
7:00 AM to 7:15 AM to 7:30 AM to 7:45 AM to 8:00 AM to	8:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM	0 0 0 0 0 0	0 2 5 5 5 3	203 654 801 822 839 807	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	149 521 544 607 600 562	0 0 0 0 0	0 0 0 0 0 0	1 5 7 4 3	0 0 0 0 0 0	0 1 1 1 1	353 1182 1356 1442 1449 1376
Midday Turning Movement Counts	12:00 PM 12:15 PM 12:30 PM 12:45 PM 1:00 PM 1:15 PM 1:30 PM 1:45 PM	0 0 0 0 0 0 0 0	0 1 0 0 0 0	143 141 150 146 154 156 148 139	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	128 136 118 156 152 160 154 163	1 0 1 0 0 0 0	0 0 0 0 0 0 0 0	0 2 0 0 0 0 1	0 0 0 0 0 0 0 0	0 0 0 1 0 0	272 277 272 302 307 316 302 303
12:00 PM to 12:15 PM to 12:30 PM to 12:45 PM to 1:00 PM to	1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM	0 0 0 0	1 1 0 0	580 591 606 604 597	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	538 562 586 622 629	2 1 1 0 0	0 0 0 0 0	2 2 2 0 1	0 0 0 0	0 1 1 1 1	1123 1158 1197 1227 1228
PM Turning Movement Counts	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	0 0 0 0 0 0 0 0	1 1 0 0 0 0 0	160 156 167 142 162 157 165 153	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	176 150 152 192 150 181 154 193	0 1 0 1 0 0	0 0 0 0 0 0 0 0	1 0 1 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	338 309 320 335 313 338 319 347
4:00 PM to 4:15 PM to 4:30 PM to 4:45 PM to 5:00 PM to	5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM	0 0 0 0 0	3 2 1 0 0	625 627 628 626 637	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	670 644 675 677 678	1 2 1 1 2	0 0 0 0 0	3 2 1 1 0	0 0 0 0 0	0 0 0 0	1302 1277 1306 1305 1317
Saturday Turning Movement Counts	12:00 PM 12:15 PM 12:30 PM 12:45 PM 1:00 PM 1:15 PM 1:30 PM 1:45 PM	0 0 0 0 0 0 0 0	2 0 0 0 1 0 0	98 107 119 102 126 99 112 93	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	87 75 98 107 88 86 114	0 0 1 0 0 0 0	0 0 0 0 0 0 0 0	2 2 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0	189 184 214 203 233 188 198 207
12:00 PM to 12:15 PM to 12:30 PM to 12:45 PM to 1:00 PM to	1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM	0 0 0 0	2 0 1 1 1	426 454 446 439 430	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	355 375 388 379 395	1 1 1 0	0 0 0 0	5 3 1 1 0	0 0 0 0 0	1 1 1 0	790 834 838 822 826
Peak Hour PHF AM 0.850 Midday 0.972 PM 0.949 Saturday 0.899	Start Time 7:45 AM 1:00 PM 5:00 PM 12:30 PM	0 0 0	5 0 0 1	839 597 637 446	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	600 629 678 388	0 0 2 1	0 0 0 0	4 1 0 1	0 0 0 0	1 1 0 1	1449 1228 1317 838

Mulryan Engi																Study Int	ersectio	on No. 6
Hamlet: Project No.	Village of M15-012	Great Neck																
Clover Drive	e at			Southbound				Westbound				Northbound				Eastbound		Vehicle
Middle Neck I	Road	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	Total
AM Turning	7:00 AM	0	1	100	0	0	0	0	0	0	0	101	8	0	1	0	1	212
Movement Counts	7:15 AM 7:30 AM	0	1 3	133 185	0 0	0	0	0	0	0	0 0	86 147	6 12	0	3 3	0 0	2 5	231 355
	7:45 AM	0	14	218	0	0	0	0	0	0	0	189	10	0	4	0	8	443
	8:00 AM	0	5	256	0	0	0	0	0	0	0	119	13	0	2	0	5	400
	8:15 AM 8:30 AM	0	9 22	157 185	0 0	0	0 0	0	0 0	0	0 0	140 130	16 18	0	4 8	0	3 12	329 375
	8:45 AM	0	15	201	0	0	Ő	0 0	õ	0	õ	130	30	0	1	0	12	389
7.00 AM	8.00 AM	0	10	(2)(0	0	0	0	0	0	0	500	26	0	11	0	16	1241
7:00 AM to 7:15 AM to	8:00 AM 8:15 AM	0	19 23	636 792	0 0	0	0	0	0	0	0	523 541	36 41	0	11 12	0	16 20	1241 1429
7:30 AM to	8:30 AM	0	31	816	0	0	0	0	0	0	0	595	51	0	13	0	21	1527
7:45 AM to 8:00 AM to	8:45 AM 9:00 AM	0	50 51	816 799	0 0	0	0 0	0	0	0	0 0	578 519	57 77	0	18 15	0	28 32	1547 1493
8:00 AM to	9:00 AM	0	51	199	0	0	0	0	0	0	0	519	//	0	15	0	52	1495
Midder Troub	12:00 PM	0	3	139	0	0	0	0	0	0	0	129	3	0	2	0	4	280
Midday Turning Movement Counts	12:00 PM 12:15 PM	0	3	139	0	0	0	0	0	0	0	129	3	0	6	0	4 6	280
	12:30 PM	0	4	150	0	0	0	0	0	0	0	117	10	0	3	0	4	288
	12:45 PM 1:00 PM	0	5 5	140	0 0	0	0 0	0	0 0	0	0 0	155	6 5	0	15	0	5 5	326 366
	1:00 PM 1:15 PM	0	3	156 152	0	0	0	0	0	0	0	152 156	5 6	0	43 4	0	5 5	326
	1:30 PM	0	5	146	0	0	0	0	0	0	0	158	1	0	4	0	3	317
	1:45 PM	0	10	127	0	0	0	0	0	0	0	160	3	0	8	0	3	311
12:00 PM to	1:00 PM	0	15	569	0	0	0	0	0	0	0	533	23	0	26	0	19	1185
12:15 PM to	1:15 PM	0	17	586	0	0	0	0	0	0	0	556	25	0	67	0	20	1271
12:30 PM to 12:45 PM to	1:30 PM 1:45 PM	0	17 18	598 594	0 0	0	0 0	0 0	0	0	0 0	580 621	27 18	0	65 66	0 0	19 18	1306 1335
1:00 PM to	2:00 PM	0	23	581	0	0	0	0	0	0	0	626	15	0	59	0	16	1335
PM Turning	4:00 PM	0	12	149	0	0	0	0	0	0	0	165	4	0	9	0	8	347
Movement Counts	4:15 PM	0	5	150	0	0	0	0	0	0	0	147	7	0	3	0	4	316
	4:30 PM 4:45 PM	0	9 9	163 133	0 0	0	0 0	0	0	0	0 0	153 188	4 6	0	2 5	0	0 3	331 344
	5:00 PM	0	4	164	0	0	0	0	0	0	0	147	3	0	8	0	2	328
	5:15 PM	0	5	154	0	0	0	0	0	0	0	178	2	0	2	0	1	342
	5:30 PM 5:45 PM	0	4 9	166 149	0 0	0	0 0	0	0	0	0 0	160 206	3 13	0	1 2	0 0	1 1	335 380
4:00 PM to	5:00 PM	0	35 27	595	0 0	0	0 0	0 0	0	0	0 0	653	21	0	19	0	15 9	1338
4:15 PM to 4:30 PM to	5:15 PM 5:30 PM	0	27	610 614	0	0	0	0	0 0	0	0	635 666	20 15	0	18 17	0	6	1319 1345
4:45 PM to	5:45 PM	0	22	617	0	0	0	0	0	0	0	673	14	0	16	0	7	1349
5:00 PM to	6:00 PM	0	22	633	0	0	0	0	0	0	0	691	21	0	13	0	5	1385
Saturday Turning Movement Counts	12:00 PM 12:15 PM	0	0	111 103	0 0	0	0 0	0	0 0	0	0 0	91 80	4 3	0	3 2	0	1 2	210 191
wovement Coufits	12:15 PM 12:30 PM	0	2	103	0	0	0	0	0	0	0	80 93	3	0	4	0	2	222
	12:45 PM	0	2	104	0	0	0	0	õ	0	0	106	1	0	7	0	3	223
	1:00 PM	0	2	121	0	0	0	0	0	0	0	104	2	0	19	0	5	253
	1:15 PM 1:30 PM	0	1	101 107	0 0	0	0 0	0 0	0	0	0 0	95 87	1 2	0	3 0	0	1 0	202 197
	1:45 PM	Ő	1	92	0	0	0	0	0	0	0	116	6	0	0	0	1	216
12:00 PM to	1:00 PM	0	5	437	0	0	0	0	0	0	0	370	11	0	16	0	7	846
12:15 PM to	1:15 PM	0	7	447	0	0	0	0	0	0	0	383	9	0	32	0	11	889
12:30 PM to	1:30 PM	0	7	445	0	0	0	0	0	0	0	398	7	0	33	0	10	900
12:45 PM to 1:00 PM to	1:45 PM 2:00 PM	0	6 5	433 421	0 0	0	0 0	0 0	0 0	0	0 0	392 402	6 11	0	29 22	0 0	9 7	875 868
Peak Hour PHF	Start Time																	
AM 0.873	7:45 AM	0	50	816	0	0	0	0	0	0	0	578	57	0	18	0	28	1547
Midday 0.912 PM 0.911	12:45 PM 5:00 PM	0	18 22	594 633	0 0	0	0 0	0 0	0 0	0	0 0	621 691	18 21	0	66 13	0 0	18 5	1335 1385
Saturday 0.889	12:30 PM		7	445	0	0	0	0	0	0	0	398	7	0	33	0	10	900

Mulryan Engir																Study Int	ersectio	on No. 7
Hamlet: Project No.	Village of M15-012	Great Neck																
Allenwood Ros Middle Neck F		U-Turn	Right	Southbound Through	Left	U-Turn	Right	Westbound Through	Left	U-Turn	Right	Northbound Through	Left	U-Turn	Right	Eastbound Through	Left	Vehicle Total
AM Turning Movement Counts	7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM	0 0 0 0 0 0 0 0 0	4 2 7 4 5 6 3 5	92 139 181 211 249 153 186 186	6 3 5 7 5 8 7 3	0 0 0 0 0 0 0 0 0	3 2 6 9 4 11 4 2	0 0 0 1 0 1 0	9 14 31 18 27 21 16 23	0 0 0 0 0 0 0 0 0	8 14 13 13 10 13 5 13	109 89 152 183 129 148 145 162	0 0 1 1 0 0 5 4	0 0 0 0 0 0 0 0 0	2 0 1 0 1 0 0 4	0 0 0 0 0 0 0 0 0	0 0 2 3 0 0 0 2	233 263 399 449 431 360 372 404
7:00 AM to 7:15 AM to 7:30 AM to 7:45 AM to 8:00 AM to	8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM	0 0 0 0 0	17 18 22 18 19	623 780 794 799 774	21 20 25 27 23	0 0 0 0 0	20 21 30 28 21	0 1 1 2 2	72 90 97 82 87	0 0 0 0 0	48 50 49 41 41	533 553 612 605 584	2 2 2 6 9	0 0 0 0 0	3 2 2 1 5	0 0 0 0 0	5 5 3 2	1344 1542 1639 1612 1567
Midday Turning Movement Counts	12:00 PM 12:15 PM 12:30 PM 12:45 PM 1:00 PM 1:15 PM 1:30 PM 1:45 PM	0 0 0 0 0 0 0 0	2 3 4 6 4 3 4	136 139 152 151 185 155 150 126	3 3 1 1 2 0	0 0 0 0 0 0 0 0	3 2 5 5 1 0	0 0 1 0 0 0 0 0	15 11 13 6 11 11 2 9	0 0 0 0 0 0 0 0	10 8 11 9 11 4 10 7	126 133 125 157 145 161 162 162	3 2 1 6 3 4 4	0 0 0 0 0 0 0 0	1 2 0 1 0 2	0 0 1 1 0 0 0	0 1 0 1 1 1	299 303 309 340 372 341 334 316
12:00 PM to 12:15 PM to 12:30 PM to 12:45 PM to 1:00 PM to	1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM	0 0 0 0	11 15 16 17 17	578 627 643 641 616	10 8 6 5 4	0 0 0 0	10 12 11 11 7	1 1 0 0	45 41 41 30 33	0 0 0 0	38 39 35 34 32	541 560 588 625 630	12 15 16 19 17	0 0 0 0	3 3 1 1 3	1 2 2 1	1 1 2 2 3	1251 1324 1362 1387 1363
PM Turning Movement Counts	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	0 0 0 0 0 0 0 0	5 2 4 1 4 13 3 3	151 147 166 139 167 131 158 143	4 0 2 2 2 3 2 4	0 0 0 0 0 0 0 0	4 1 2 5 1 3 4 4	0 0 1 0 0 0 0 0	7 14 6 15 11 6 9 16	0 0 0 0 0 0 0 0	13 8 18 14 12 33 22 10	161 148 156 194 161 190 164 215	2 7 1 2 5 1 2	0 0 0 0 0 0 0 0	0 5 2 1 1 3 3	0 0 0 2 1 0 1	2 3 0 1 0 1 2 1	349 335 359 375 363 387 366 402
4:00 PM to 4:15 PM to 4:30 PM to 4:45 PM to 5:00 PM to	5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM	0 0 0 0	12 11 22 21 23	603 619 603 595 599	8 6 9 9 11	0 0 0 0 0	12 9 11 13 12	1 1 0 0	42 46 38 41 42	0 0 0 0	53 52 77 81 77	659 659 701 709 730	12 12 10 9 10	0 0 0 0	10 11 7 6 6	0 2 3 3 4	6 4 2 4 4	1418 1432 1484 1491 1518
Saturday Turning Movement Counts	12:00 PM 12:15 PM 12:30 PM 12:45 PM 1:00 PM 1:15 PM 1:30 PM 1:45 PM	0 0 0 0 0 0 0 0	3 1 5 2 1 2 4 1	109 111 121 111 143 102 108 89	1 2 3 0 0 0 0 1 0	0 0 0 0 0 0 0 0	1 5 1 1 1 1 3 2	0 0 0 0 0 0 0 0	5 5 6 12 8 7 9 8	0 0 0 0 0 0 0 0	8 15 13 13 12 10 8 8	92 80 97 101 104 92 86 119	3 1 0 3 1 2 3	0 0 0 0 0 0 0 0	1 0 1 2 1 0 0	0 0 1 0 0 1 0 0	1 1 0 2 1 0 0	224 222 247 241 276 218 221 230
12:00 PM to 12:15 PM to 12:30 PM to 12:45 PM to 1:00 PM to	1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM	0 0 0 0 0	11 9 10 9 8	452 486 477 464 442	6 5 3 1 1	0 0 0 0 0	8 4 6 7	0 0 0 0 0	28 31 33 36 32	0 0 0 0 0	49 53 48 43 38	370 382 394 383 401	4 4 6 9	0 0 0 0	3 4 4 3	1 1 2 1 1	2 3 3 3 3	934 986 982 956 945
Peak Hour PHF AM 0.913 Midday 0.932 PM 0.944 Saturday 0.893	Start Time 7:30 AM 12:45 PM 5:00 PM 12:15 PM	0 0 0 0	22 17 23 9	794 641 599 486	25 5 11 5	0 0 0 0	30 11 12 8	1 0 0 0	97 30 42 31	0 0 0 0	49 34 77 53	612 625 730 382	2 19 10 4	0 0 0 0	2 1 6 4	0 2 4 1	5 2 4 3	1639 1387 1518 986

Mulryan Engin Hamlet:	Village of 0														S	tudy Inter	sectior	1 No. 1S
Project No. Old Mill/Piccadilly Middle Neck B		U-Turn	Right	Southbound Through	Left	U-Turn	Right	Westbound Through	Left	U-Turn	Right	Northbound Through	Left	U-Turn	Right	Eastbound Through	Left	Vehicle Total
Saturday Turning Movement Counts	8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:15 AM 10:30 AM 10:30 AM 11:35 AM 11:30 AM 11:35 AM 11:35 AM 11:35 AM 11:35 AM 11:35 AM 12:30 PM 12:30 PM 12:30 PM 12:30 PM 12:30 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 6 5 4 1 10 7 6 6 7 8 7 8 7 12 14 3 7 11	32 32 52 45 74 54 70 67 81 68 86 75 75 79 78 86 79 99 84 101 95 82 78 82 78 86	0 0 1 1 1 0 3 0 0 1 1 1 0 1 1 1 3 1 0 0 0 1 1 1 3 1 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 1 0 0 0 2 0 0 2 3 2 1 0 0 2 0 0 2 3 2 1 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 0	2 1 4 2 2 1 6 2 3 4 5 3 3 1 6 4 1 1 2 2 4 4 0	1 2 11 6 5 5 2 3 8 1 7 4 4 7 4 3 3 4 4 4 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 7 3 2 3 2 1 1 2 3 3 5 1 1 3 7 6 9 8 1 3 4 5	34 49 38 60 66 57 78 87 72 76 90 76 90 76 90 76 90 76 90 76 90 76 90 76 90 76 90 76 90 76 90 76 90 76 90 76 90 76 90 76 90 73 102 73 82 89 88 80 73 73 73 73	10 12 4 13 15 9 23 15 25 22 18 11 15 16 7 7 9 9 13 16 9 13	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 6 3 6 16 8 4 12 9 23 20 19 10 9 11 15 11 17 22 22 22 22 22 22 26 26	0 0 2 4 1 1 1 3 2 5 2 1 0 0 0 1 3 6 4 4 5 7 1	3 3 5 1 2 5 9 5 5 6 10 8 8 8 6 9 6 8 7 11 10 2 6 11	89 107 118 146 159 208 213 220 240 232 203 194 197 199 254 248 255 248 256 231 212 223
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 10:30 AM 11:15 AM 11:30 AM 11:15 AM 12:30 PM 12:30 PM 1:30 PM 1:30 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 16 18 16 20 22 28 39 37 36 32 27 25 26 28 28 34 41 36 35	161 203 225 243 265 272 286 302 310 304 310 304 310 307 304 328 333 356 379 376 374 351 342	1 3 3 5 4 3 4 2 3 3 3 3 3 3 6 6 5 4 1 1 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 3 2 1 1 1 3 2 4 5 7 8 6 3 2 2 4 4 5 7 8 6 3 2 2 4 4 5 7 8 6 3 2 4 4 5 7 8 6 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	11 11 12 9 11 12 15 14 15 15 15 12 13 14 12 8 6 9 12 10	15 20 24 27 18 15 18 14 13 17 13 16 19 19 19 19 19 18 17 14 14 15 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 13 15 10 8 7 6 7 9 13 12 10 10 10 12 17 25 30 24 21 16 13	174 200 217 236 261 288 294 313 325 314 318 305 288 314 318 330 346 332 339 333 317	39 44 47 52 62 62 72 85 80 76 66 60 49 45 37 30 32 38 47 51	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 31 33 44 40 33 48 64 71 72 58 49 45 46 54 65 46 54 65 72 83 88 82 86	2 6 7 8 7 6 7 7 11 12 10 8 3 1 1 4 10 14 17 7 9 20 17	12 11 13 17 24 25 26 29 32 34 30 31 29 29 30 32 36 40 39 39	460 559 617 658 720 745 800 881 905 869 826 793 844 865 916 972 974 990 954 936
Peak Hour PHF Saturday 0.967	Start Time 12:30 PM	0	36	374	1	0	2	9	14	0	21	339	47	0	88	19	40	990
			Pede	strian 1			Pede	estrian 2			Pede	strian 3			Pede	strian 4		Total
Saturday Turning Movement Counts	8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 10:00 AM 10:15 AM 10:30 AM 11:15 AM 11:30 AM 11:45 AM 11:30 PM 12:45 PM 12:30 PM 12:45 PM	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				3 3 0 13 14 9 21 13 13 13 13 13 14 12 8 2 10 21 15 33 66 5 11 15 4				0 0 3 7 1 5 2 0 0 7 1 2 1 0 0 7 1 2 1 0 0 0 4 3 0 0 1 1 0 3				3 1 4 13 18 14 12 21 35 19 32 20 12 4 11 6 7 7 9 4 20 24 21 3				8 7 5 33 40 60 47 72 40 33 14 17 17 39 37 60 103 25 36 58 10
8:00 AM to 8:15 AM to 8:30 AM to 8:34 AM to 9:00 AM to 9:30 AM to 9:35 AM to 9:345 AM to 10:15 AM to 10:30 AM to 10:36 AM to 10:36 AM to 11:30 AM to 11:30 AM to 11:34 AM to 11:34 AM to 11:30 AM to 11:30 AM to 11:34 AM to 12:30 PM to 12:30 PM to 12:30 PM to 12:30 PM to 12:30 PM to	9:00 AM 9:15 AM 9:45 AM 10:00 AM 10:15 AM 10:00 AM 10:15 AM 10:30 AM 11:45 AM 11:45 AM 11:45 AM 12:45 PM 12:30 PM 12:45 PM 1:30 PM 1:45 PM 1:30 PM	10 9 14 19 28 35 39 40 37 23 17 13 17 27 38 70 59 48 45 12	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 30 36 57 57 62 64 65 62 57 36 32 41 48 79 135 119 97 35	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 10 11 16 15 8 7 9 8 10 11 4 3 1 4 7 7 7 7 4 11 14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21 36 49 57 65 82 87 107 106 83 68 47 33 28 31 29 27 40 57 69 68	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	53 85 110 149 156 176 191 219 219 192 159 104 81 87 110 153 239 225 224 222 129
Peak Hour Saturday Saturday	Start Time 9:45 AM 12:00 PM	39 70	0 0	0 0	0 0	64 135	0 0	0 0	0 0	9 7	0 0	0 0	0 0	107 27	0 0	0 0	0 0	219 239

Mulryan Engin Hamlet:		P.C. Great Neck													S	tudy Inte	rsection	n No. 2S
Project No. North Site Acc	M15-012 cess at			Southbound				Westbound		*****		Northbound				Eastbound		Vehicle
Middle Neck	8:00 AM	U-Turn 0	Right 0	Through 44	Left 0	U-Turn 0	Right 0	Through 0	Left 0	U-Turn 0	Right 0	Through 36	Left 0	U-Turn 0	Right 0	Through 0	Left 0	Total 80
Movement Counts	8:15 AM 8:30 AM	0 0	0 0	54 60	0 0	0	0 0	0 0	0 0	0 0	0	60 68	0	0 0	1 0	0 0	0 0	115 128
	8:45 AM 9:00 AM	0	0	67 87	0	0	0	0	0	0	0	76 88	1	0	2	0	0	146 177
	9:15 AM 9:30 AM 9:45 AM	0 0 0	0 1 1	91 99 104	0 0 0	0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	94 111 99	1 2 1	0 0 0	1 2 1	0 0 0	1 0 0	188 215 206
	10:00 AM 10:15 AM	0	י 1 1	104 108 85	0	0	0	0	0	0	0	105 111	2	0	2	0	0	218 202
	10:30 AM 10:45 AM	0 0	1 0	109 89	0 0	0	0 0	0 0	0 0	0	0 0	91 97	1 1	0 0	4 5	0 0	0 2	206 194
	11:00 AM 11:15 AM	0	0	91 95	0	0	0	0	0	0	0	100 91	2	0	1	0	1	195 187
	11:30 AM 11:45 AM 12:00 PM	0 0 0	1 2 0	94 78 105	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	86 93 94	2 2 0	0 0 0	2 2 0	0 0 0	0 0 0	185 177 199
	12:15 PM 12:30 PM	0	0	110 119	0	0	0	0	0	0	0	87 95	0	0	3	0	1 0	201 215
	12:45 PM 1:00 PM	0	2	111 127	0	0	0	0	0	0	0	119 113	0	0	1	0	0	233 241
	1:15 PM 1:30 PM 1:45 PM	0 0 0	1 0 1	103 107 88	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	86 82 118	1 0 0	0 0 0	2 1 0	0 0 0	0 0 0	193 190 207
8:00 AM to 8:15 AM to	9:00 AM 9:15 AM	0	0	225 268	0 0	0	0	0	0	0	0 0	240 292	1	0	3 4	0	0 1	469 566
8:30 AM to 8:45 AM to	9:30 AM 9:45 AM	0 0	0 1	305 344	0 0	0	0 0	0 0	0 0	0	0 0	326 369	2 4	0 0	4 6	0 0	2 2	639 726
9:00 AM to 9:15 AM to	10:00 AM 10:15 AM	0	2 3 4	381 402 396	0 0 0	0 0 0	0 0 0	0 0 0	0 0	0 0 0	0 0 0	392 409	4 6 7	0	5 6 8	0 0 0	2 1 0	786 827 841
9:30 AM to 9:45 AM to 10:00 AM to	10:30 AM 10:45 AM 11:00 AM		4 4 3	406 391	0	0	0	0	0	0	0	426 406 404	6 6	0	8 10 14	0	0 2	832 820
10:15 AM to 10:30 AM to	11:15 AM 11:30 AM	0 0	2 1	374 384	0 0	0	0	0 0	0 0	0	0 0	399 379	6 5	0 0	13 10	0	3 3	797 782
10:45 AM to 11:00 AM to 11:15 AM to	11:45 AM 12:00 PM 12:15 PM	0 0 0	1 3 3	369 358 372	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	374 370 364	6 7 5	0 0 0	8 5 4	0 0 0	3 1 0	761 744 748
11:30 AM to 11:45 AM to	12:30 PM 12:45 PM	0	3	387 412	0	0	0	0	0	0	0	360 369	4	0	7 6	0	1	762 792
12:00 PM to 12:15 PM to	1:00 PM 1:15 PM	0	2	445 467	0 0	0	0	0	0	0	0	395 414	0	0	5 6	0	1	848 890
12:30 PM to 12:45 PM to 1:00 PM to	1:30 PM 1:45 PM 2:00 PM	0 0 0	3 3 2	460 448 425	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	413 400 399	1 1 1	0 0 0	5 5 4	0 0 0	0 0 0	882 857 831
Peak Hour PHF	Start Time																	
Saturday 0.923	12:15 PM	0																
		0	2 Pede	467	0	0	0 Pedes	0 atrian 2	0	0	0 Pedes	414	0	0	6 Pede	0 strian 4	1	890 Total
Saturday Turning	8:00 AM	0		467 estrian 1	0	0		0 strian 2	0	0		414 strian 3	0	3		0 strian 4	1	890 Total 3
Saturday Turning Movement Counts	8:15 AM 8:30 AM	0 1 1			0	0 0 0			0	0 1 0			0	3 2 10			1	Total 3 4 11
	8:15 AM	0 1 1 0 0			0	0			0	0			0	3 2 10 28 18			1	Total 3 4 11 28 18
	8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM	0 1 1 0			0	0 0 0 0 0			0	0 1 0 0 0			0	3 2 10 28 18 15 29 23				Total 3 4 11 28 18 15 30 23
	8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM	0 1 1 0 0 0 0 0 1 0 0			0				0	0 1 0 0 0 0 1 0 0 0 0 0			0	3 2 10 28 18 15 29 23 32 28				Total 3 4 11 28 18 15 30 23 33 28
	8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM	0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0			0				0	0 1 0 0 0 1 0 0 0 0 0 0 0 0				3 2 10 28 18 15 29 23 32 28 34 37				Total 3 4 11 28 18 15 30 23 33 28 34 37
	8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0				0	0 1 0 0 0 0 1 0 0 0 0 0 0				3 2 10 28 18 15 29 23 32 28 34				Total 3 4 11 28 18 15 30 23 33 28 34
	8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM 11:13 AM 11:30 AM 11:45 AM	0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0			0				0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				3 2 10 28 18 15 29 23 32 28 34 37 36 27 40 52 19			1	Total 3 4 11 28 15 30 23 33 28 34 37 36 27 40 52 25
	8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 11:15 AM 11:30 AM 11:15 AM 11:30 AM 11:30 AM 11:30 AM 11:20 PM 12:30 PM	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0				0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				3 2 10 28 18 15 29 23 32 28 34 37 36 27 40 52 19 16 25				Total 3 4 11 28 18 15 30 23 33 34 37 36 27 40 52 25 16 25
	8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:15 AM 10:15 AM 10:15 AM 10:15 AM 11:30 AM 11:15 AM 11:30 AM 11:30 AM 12:15 PM 12:30 PM 12:30 PM 12:30 PM	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0				0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				3 2 10 28 18 15 29 23 32 28 34 37 36 27 40 52 19 16 52 19 16 25 40 27 2				Total 3 4 11 28 18 15 30 23 33 28 34 37 36 27 40 52 25 45 27 2
	8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:30 AM 9:30 AM 9:45 AM 10:15 AM 10:30 AM 10:55 AM 10:30 AM 11:55 AM 11:30 AM 11:35 AM 11:30 AM 11:35 AM 12:30 PM 12:30 PM 12:34 PM 12:34 PM 12:04 PM	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0				0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0				3 2 100 28 18 15 29 23 32 28 34 37 36 27 40 52 19 16 25 40 27				Total 3 4 11 28 18 15 30 23 33 28 34 37 36 27 40 52 25 16 25 45 27
Boot 8:00 AM to 8:15 AM to	8:15 AM 8:30 AM 9:00 AM 9:15 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:30 AM 10:30 AM 11:35 AM 11:30 AM 11:35 PM 12:30 PM 12:30 PM 12:30 PM 12:30 PM 12:30 PM 13:45 AM 12:45 PM 12:45 PM 1	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pede	0 0	0 0		0 0	0 0	0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0	0 0	3 2 10 28 15 29 23 32 28 34 37 36 27 40 52 19 16 25 40 27 2 4 3 3 58	0 0	0 0	0 0	Total 3 4 11 28 18 15 30 23 33 28 34 37 36 27 40 52 25 16 25 16 25 27 2 4 3 4 40 61
Novement Counts 8:00 AM to 8:15 AM to 8:30 AM to 8:35 AM to	8:15 AM 8:30 AM 9:00 AM 9:15 AM 9:15 AM 10:20 AM 9:45 AM 10:20 AM 10:30 AM 10:30 AM 11:30 AM 11:30 AM 12:45 PM 12:30 PM 12:30 PM 12:30 PM 12:45 PM 1:30 PM 1:30 PM 1:30 PM 1:35 PM 1:3	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	strian 1 0 0 0 0 0	0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pcdec	0 0 0 0 0	0 0 0 0	3 2 10 28 15 29 23 32 28 34 37 36 27 36 27 36 27 19 16 25 40 27 2 4 3 3 8 8 71 90	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	Total 3 4 11 28 18 15 30 23 33 34 37 36 27 40 52 16 25 16 25 16 25 2 43 3 46 61 72 91
8:00 AM to 8:15 AM to 8:30 AM to	8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 11:15 AM 11:30 AM 11:35 AM 12:45 PM 1:30 PM 1:31 PM 1:35 PM 1:32 PM	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pedee 0 0 0 0 0 0 0	0 0 0	0000		0 0 0	0 0 0	0000	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0	0000	3 2 10 28 18 15 29 23 32 28 34 37 22 8 34 37 27 40 52 19 16 25 40 27 2 4 3 58 71	Pede	0 0 0	0 0 0	Total 3 4 11 28 18 15 30 23 33 28 34 37 36 27 40 52 25 45 277 2 43 3 46 61 72 2
8:00 AM to 8:15 AM to 8:15 AM to 9:00 AM to 9:00 AM to 9:15 AM to 9:20 AM to 9:33 AM to 9:33 AM to 9:34 AM to 9:35 AM to 9:35 AM to 9:35 AM to 9:35 AM to 9:35 AM to 9:36 AM to	8:15 AM 8:30 AM 9:00 AM 9:15 AM 9:15 AM 10:30 AM 9:30 AM 9:30 AM 10:30 AM 10:30 AM 11:30 AM 11:30 AM 11:30 AM 11:30 AM 12:30 PM 12:30 PM 12:30 PM 12:30 PM 12:30 PM 12:30 PM 12:30 PM 12:35 PM 12:30 PM 12:35 PM 12:30 PM 12:35 PM 12:30 PM 12:35 PM 1	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pede 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Pedes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pede:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 2 10 28 18 15 29 23 32 28 34 37 36 27 40 52 19 16 25 40 27 2 40 27 2 40 27 40 27 2 40 27 29 19 19 19 19 19 19 19 19 19 1	Pede 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 3 4 11 28 18 15 30 23 33 28 34 37 36 27 40 52 16 25 16 25 2 4 3 46 61 72 91 86 101 114 118 118
Movement Counts 8:00 AM to 8:15 AM to 8:30 AM to 9:00 AM to 9:01 AM to 9:15 AM to 9:30 AM to 9:31 AM to 9:31 AM to 9:35 AM to 9:35 AM to 9:35 AM to 9:35 AM to 10:30 AM to	8:15 AM 8:30 AM 8:30 AM 9:00 AM 9:15 AM 9:15 AM 10:20 AM 10:45 AM 10:45 AM 11:30 AM 11:45 AM 11:30 AM 12:45 PM 12:30 PM 12:45 PM 12:45 PM 12:45 PM 12:45 PM 12:45 PM 10:45 AM 10:45 AM 10:15 AM 10:15 AM 10:15 AM	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pede 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Pede:	strian 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Pede:	strian 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 2 10 28 18 15 29 23 32 28 34 37 36 27 40 52 19 16 25 40 27 2 4 3 58 71 90 85 99 117 131 135 134	Pede 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 strian 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 3 4 11 28 18 15 30 23 33 34 34 37 36 27 40 52 16 25 16 25 24 3 46 61 72 2 4 3 41 118 132 135 1354 134
Novement Counts 8:00 AM to 8:15 AM to 8:30 AM to 9:15 AM to 9:15 AM to 9:15 AM to 9:30 AM to 9:33 AM to 9:34 AM to 10:35 AM to 10:35 AM to 10:35 AM to 10:35 AM to	8:15 AM 8:30 AM 9:00 AM 9:15 AM 9:15 AM 10:00 AM 9:30 AM 9:30 AM 9:30 AM 10:15 AM 10:30 AM 11:35 AM 11:30 AM 11:30 AM 11:30 AM 11:30 AM 12:35 PM 12:30 PM 12	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Pede:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 2 10 28 18 15 29 23 32 28 34 37 36 27 40 52 19 16 25 40 27 2 40 52 19 16 25 40 27 28 36 27 19 16 25 29 19 16 29 28 28 34 37 28 34 36 27 19 16 29 20 28 28 34 37 29 28 34 36 27 19 16 25 29 28 36 27 19 16 25 29 29 28 36 27 29 28 36 27 29 28 36 27 29 28 36 27 29 29 28 36 27 29 29 20 20 20 20 20 20 20 20 20 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 3 4 11 28 15 30 23 33 34 15 30 23 33 38 34 37 36 27 40 52 25 45 27 2 43 46 61 72 91 86 101 114 132 135
Novement Counts 8:00 AM to 8:15 AM to 8:15 AM to 9:00 AM to 9:00 AM to 9:15 AM to 9:15 AM to 9:15 AM to 10:15 AM to 10:30 AM to 10:30 AM to 10:30 AM to 10:30 AM to 10:30 AM to 11:30 AM to 11:30 AM to 11:30 AM to	8:15 AM 8:30 AM 9:00 AM 9:15 AM 9:15 AM 10:30 AM 9:30 AM 9:30 AM 10:30 AM 10:30 AM 10:30 AM 10:30 AM 11:30 AM 11:30 AM 11:30 AM 11:30 AM 12:30 PM 12:30 PM 12:30 PM 1:30 PM 1:30 AM 9:30 AM 9:30 AM 9:30 AM 10:35 AM 10:35 AM 10:35 AM 10:30	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pede 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Pede:	strian 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pede:	strian 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 2 10 28 18 15 29 23 32 28 34 37 36 27 40 52 19 16 25 40 27 2 40 27 2 40 27 2 40 27 2 40 27 2 40 27 2 40 27 29 19 16 29 20 20 20 20 20 20 20 20 20 20	Pede 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 3 4 11 28 18 15 30 23 33 28 34 37 36 27 40 52 16 25 16 25 2 4 3 3 46 61 72 2 43 3 1114 118 1122 135 134 140 155 144 133 118
85:00 AM to 85:15 AM to 8:35 AM to 8:35 AM to 9:00 AM to 9:01 AM to 9:03 AM to 9:30 AM to 9:31 AM to 9:34 AM to 9:35 AM to 9:33 AM to 10:30 AM to 10:33 AM to 11:35 AM to 11:30 AM to 11:30 AM to 12:00 PM to 12:15 PM to	8:15 AM 8:30 AM 8:30 AM 9:00 AM 9:15 AM 9:15 AM 10:20 AM 10:30 AM 10:30 AM 10:30 AM 10:30 AM 11:30 AM 11:30 AM 11:30 AM 12:30 PM 12:30 PM 12:35 PM 12:30 PM 12:35 PM 12:30 PM 12:35 PM 12:30 PM 12:35 PM	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pede:	strian 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 2 10 28 18 15 29 23 32 28 34 15 29 23 32 28 34 37 36 27 40 52 19 16 25 40 27 2 4 3 58 71 90 85 99 117 131 135 134 147 147 155 135 135 135 135 135 135 135	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 3 4 11 28 15 30 23 33 34 15 30 23 34 36 27 40 52 25 16 25 45 27 2 4 3 46 61 72 91 86 101 114 135 134 140 155 144 133
8:00 AM to 8:15 AM to 8:15 AM to 8:15 AM to 9:00 AM to 9:00 AM to 9:00 AM to 9:30 AM to 10:15 AM to 10:30 AM to 11:30 AM to 11	8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 10:00 AM 9:30 AM 9:30 AM 10:15 AM 10:30 AM 11:15 AM 11:30 AM 11:30 AM 11:30 AM 11:45 AM 12:45 PM 1:30 PM 1:30 PM 1:45 PM 1:30 AM 9:15 AM 10:30 AM 9:45 AM 10:30 AM 10:45 AM 10:30 AM 10:45 AM 11:15 AM 10:30 AM 11:15 AM 10:30 AM 11:15 AM 10:30 AM 11:15 AM 11:30 AM 11:15 AM 11:30 AM 11:15 AM 11:30 AM 11:15 AM 11:30 AM 11:35 AM 12:35 PM 12:35 P	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pede 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Pede:	strian 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 2 10 28 18 15 29 23 32 28 34 37 36 27 40 52 19 16 25 40 27 2 4 3 40 27 2 4 3 58 71 90 85 99 112 117 1131 135 134 140 155 134 140 155 134 140 155 155 197 107 107 107 107 107 107 107 10	Pede 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 3 4 11 28 18 15 30 23 33 34 34 37 36 27 40 52 16 25 16 25 43 36 27 4 33 36 25 16 25 25 46 61 72 2 4 3 114 118 112 135 144 133 118 111 1113 113
8:00 AM 10 8:15 AM 10 8:13 AM 10 8:30 AM 10 9:00 AM 10 9:01 AM 10 9:03 AM 10 9:30 AM 10 9:30 AM 10 9:30 AM 10 10:30 AM 10 10:30 AM 10 11:35 AM 10 12:30 PM 10 12:35 PM 10	8:15 AM 8:30 AM 8:30 AM 9:00 AM 9:15 AM 10:00 AM 9:30 AM 9:30 AM 10:35 AM 10:30 AM 10:45 AM 11:30 AM 11:30 AM 11:30 AM 12:30 PM 12:30 PM 12:35 PM 12:30 PM 12:35 PM 10:15 AM 9:30 AM 9:30 AM 10:35 AM 10:35 AM 10:30 AM 10:35 AM 10:	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pede 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Pede:	strian 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pede:	strian 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3 2 10 28 18 15 29 23 32 28 34 37 36 27 40 52 19 16 25 40 27 2 4 3 37 37 27 40 25 29 19 16 25 29 19 16 25 29 19 16 25 29 19 16 25 29 19 16 25 26 27 20 25 20 20 217 117 1131 135 134 1400 277 100 277 100 277 20 277 117 117 117 117 117 100 277 277 277 1177 17	Pede 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 4		Total 3 4 11 28 15 30 23 33 34 15 30 23 34 37 36 27 40 52 16 25 16 25 21 4 3 3 46 61 72 2 4 3 18 132 135 134 140 133 118 111 113 99 78 78
8:00 AM to 8:15 AM to 8:30 AM to 8:31 AM to 9:00 AM to 9:01 AM to 9:03 AM to 9:15 AM to 9:43 AM to 9:43 AM to 9:43 AM to 10:30 AM to 10:30 AM to 11:30 AM to 11:30 AM to 12:30 PM to 12:35 PM to 12:35 PM to 12:34 PM to	8:15 AM 8:30 AM 9:00 AM 9:15 AM 9:15 AM 10:20 AM 9:30 AM 9:30 AM 9:30 AM 10:30 AM 10:30 AM 10:30 AM 11:30 AM 11:30 AM 11:30 AM 11:30 AM 11:30 AM 12:30 PM 12:30 PM 12:30 PM 12:30 PM 12:30 PM 12:45 PM 13:00 AM 9:30 AM 9:30 AM 9:30 AM 10:30	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pede 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Pede:	strian 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pede:	strian 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3 2 10 28 18 15 29 23 32 28 34 37 36 27 40 52 19 16 25 40 27 2 4 3 37 37 27 40 25 29 19 16 25 29 19 16 25 29 19 16 25 29 19 16 25 29 19 16 25 26 27 20 25 20 20 217 117 1131 135 134 1400 277 100 277 100 277 20 277 117 117 117 117 117 100 277 277 277 1177 17	Pede 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	strian 4		Total 3 4 11 28 15 30 23 33 34 15 30 23 34 37 36 27 40 52 16 25 16 25 21 4 3 3 46 61 72 2 4 3 18 132 135 134 140 133 118 111 113 99 78 78

Mulryan Engin Hamlet:	Village of O														S	tudy Inter	section	1 No. 3S
Project No. North Site Acco Middle Neck B		U-Turn	Right	Southbound Through	Left	U-Turn	Right	Westbound Through	Left	U-Turn	Right	Northbound Through	Left	U-Turn	Right	Eastbound Through	Left	Vehicle Total
Saturday Turning Movement Counts	8:00 AM 8:15 AM 8:30 AM 9:00 AM 9:15 AM 9:30 AM 9:30 AM 9:30 AM 10:35 AM 10:30 AM 11:30 AM 11:30 AM 11:30 AM 12:30 PM 12:30 PM 12:30 PM 1:30 PM 1:30 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	41 34 59 66 90 69 78 76 31 03 87 82 86 90 83 112 110 115 113 112 97 117	1 4 1 1 7 2 3 3 3 5 4 8 13 3 4 7 2 4 8 6 4 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 7 2 8 9 9 11 9 5 7 10 6 9 5 5 8 6 6 10 7 4 4 8 5		4 1 7 9 5 3 5 4 9 4 3 5 11 0 1 3 4 6 6 9 5 6 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 1 3 3 5 3 4 8 3 3 4 8 3 4 4 5 5 2 1 2 3 4 5 5 2 1 2 3 4 5 5 2 2 5 2	45 52 50 54 73 74 59 93 3101 96 90 98 78 83 84 83 84 106 777 95 1011 86 83 84 81	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93 102 120 141 187 160 161 188 213 213 207 197 191 189 187 232 204 236 239 224 221 204 224 221 204 221 204 221 204 221 204 221 204 221 204 221 204 221 204 221 205 221 205 221 205 221 205 221 205 205 205 205 205 205 205 205 205 205
8:00 AM to 8:15 AM to 8:30 AM to 8:45 AM to 9:00 AM to 9:15 AM to 9:15 AM to 9:15 AM to 10:00 AM to 10:30 AM to 10:30 AM to 10:30 AM to 10:30 AM to 11:35 AM to 11:30 AM to 11:35 AM to 11:30 AM to 11:35 AM to 12:35 PM to 12:35 PM to 11:30 AM to 11:30 AM to 11:30 AM to 11:30 AM to 11:30 AM to 11:35 AM to 12:30 PM to 11:30 AM to	9:00 AM 9:15 AM 9:30 AM 9:345 AM 10:00 AM 10:15 AM 10:30 AM 11:35 AM 11:30 AM 11:45 AM 12:00 PM 12:15 PM 12:30 PM 12:00 PM 12:30 PM 1:30 PM 1:30 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 249 284 303 316 350 375 386 375 386 375 386 375 345 341 371 395 420 450 471 473 455 459	7 13 11 13 15 11 14 15 20 30 28 27 16 17 21 20 22 26 26 28	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 26 28 37 38 34 32 30 25 27 24 25 30 29 27 25 23 20 29 27 25 23 21	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21 22 24 22 17 21 22 20 21 23 29 27 25 18 14 19 25 26 26 24 19	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 11 10 14 15 20 18 18 18 18 14 16 13 10 8 10 14 17 16	201 229 251 260 299 349 385 362 349 343 326 354 349 343 326 354 354 354 354 355	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	456 550 608 649 696 724 787 839 854 8840 808 784 764 799 812 859 911 933 950 918 898
Peak Hour PHF Saturday 0.935	Start Time 12:30 PM	0	0	473	26	0	25	0	26	0	14	386	0	0	0	0	0	950
			Pede	strian 1			Pede	strian 2			Pede	strian 3			Pede	strian 4		Total
Saturday Turning Movement Counts	8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:30 AM 9:30 AM 10:30 AM 10:30 AM 10:45 AM 11:30 AM 11:30 PM 12:30 PM 12:30 PM 1:30 PM 1:30 PM	$\begin{array}{c} 2\\ 0\\ 0\\ 0\\ 2\\ 1\\ 2\\ 16\\ 5\\ 3\\ 2\\ 0\\ 0\\ 0\\ 1\\ 0\\ 9\\ 18\\ 14\\ 5\\ 4\\ 2\\ \end{array}$				2 5 5 14 9 5 23 13 12 18 29 15 6 9 1 13 16 26 44 53 4 13 21 10				$\begin{array}{c} 0\\ 0\\ 1\\ 4\\ 6\\ 3\\ 3\\ 5\\ 2\\ 1\\ 1\\ 0\\ 2\\ 1\\ 1\\ 2\\ 0\\ 0\\ 0\\ 0\\ 1\\ 2\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				4 5 6 18 15 10 27 20 30 24 33 17 8 10 2 15 17 26 53 71 19 20 25 12
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 11:30 AM 11:30 AM 11:45 AM 12:30 PM 12:30 PM 12:45 PM 1:30 PM 1:30 PM	2 0 2 3 5 21 24 26 10 5 2 0 1 1 1 10 28 41 46 41 25	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 33 51 50 53 66 72 74 68 59 31 29 39 56 99 139 129 139 129 139 129 139 14 48	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 11 14 16 17 13 11 9 4 4 4 4 4 4 6 4 3 2 0 1 3 3 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33 44 49 70 72 87 101 107 104 82 68 37 35 44 60 111 167 169 163 135 76
Peak Hour Saturday Saturday	Start Time 9:45 AM 12:15 PM	26 41	0 0	0 0	0 0	72 127	0 0	0 0	0 0	9 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	107 169

Mulryan Engin Hamlet:	Village of	P.C. Great Neck								-				-	S	tudy Inter	rsection	1 No. 4S
Project No. Millbrook Cou Middle Neck I		U-Turn	Right	Southbound Through	Left	U-Turn	Right	Westbound Through	Left	U-Turn	Right	Northbound Through	Left	U-Turn	Right	Eastbound Through	Left	Vehicle Total
Saturday Turning Movement Counts	8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 10:35 AM 10:30 AM 11:35 AM 11:30 AM 11:35 AM 11:30 AM 11:35 PM 12:30 PM 12:30 PM 1:35 PM 1:35 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 2 1 0 2 3 0 2 0 2 0 1 0 6 1 0 0 1 2 0	43 56 62 73 91 97 99 103 87 110 96 93 97 79 110 96 93 97 79 110 96 123 108 123 108 123 100 107 107 91	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	34 57 62 76 87 98 111 92 90 96 99 90 90 96 91 83 93 115 108 87 83 114	1 0 2 2 2 2 1 0 3 0 1 1 1 0 2 0 0 0 0 0 0 0 0 0 0 1 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 2 2 2 1 0 1 6 1 0 2 2 3 1		0 0 0 1 1 2 0 1 2 0 0 0 0 1 2 2 1 0 0 0 0	79 113 125 153 182 201 216 198 208 203 190 194 192 194 192 194 194 192 203 220 224 233 193 193 195
8:00 AM to 8:15 AM to 8:30 AM to 8:30 AM to 9:00 AM to 9:15 AM to 9:30 AM to 9:34 AM to 9:30 AM to 10:30 AM to 10:30 AM to 10:45 AM to 11:45 AM to 12:30 AM to 12:45 PM to 12:30 PM to 12:34 PM to 12:00 PM to 12:34 PM to 1:00 PM to	1:40 FM 9:00 AM 9:15 AM 9:30 AM 9:45 AAA 10:00 AM 10:15 AM 10:30 AM 10:30 AM 11:15 AM 11:30 AM 11:30 AM 12:30 PM 12:30 PM 12:35 PM 1:30 PM 1:30 PM		0 0 1 3 4 4 5 5 5 5 5 5 2 3 3 7 8 7 7 2 3 3	234 282 323 360 405 395 406 395 406 395 386 397 384 382 408 437 455 440 423				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			229 282 323 372 388 397 380 377 380 360 360 360 360 360 360 362 399 382 399 393 392	2 3 4 6 7 5 6 4 4 5 3 4 5 3 4 3 2 2 0 0 0 3 4 6		4 5 7 8 8 7 5 5 5 5 5 5 5 4 2 2 8 8 8 7 3 5 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 2 2 4 3 3 5 3 3 2 0 1 3 5 6 5 3 1 0	205 470 573 661 752 797 823 817 804 796 782 779 766 782 761 762 840 870 870 846 830
Peak Hour PHF Saturday 0.933	Start Time 12:15 PM	0	7	452	0	0	0	0	0	0	0	399	0	0	7	0	5	870
			Pede	estrian 1			Pede	strian 2			Pede	strian 3			Pede	strian 4		Total
Saturday Turning Movement Counts	8:00 AM 8:15 AM 8:45 AM 9:00 AM 9:15 AM 9:15 AM 10:00 AM 9:45 AM 10:15 AM 10:00 AM 11:15 AM 11:30 AM 11:15 AM 11:30 AM 11:45 AM 12:15 PM 12:45 PM 1:30 PM 1:30 PM	0 0 0				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0 1 1 2 2 6 0 1 2 0 0 0 0 1 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0				6 3 5 23 23 19 41 25 52 29 27 39 48 37 43 52 31 18 21 27 26 1 2 1				6 3 5 24 25 19 43 29 60 29 30 43 48 37 43 58 32 23 21 29 26 2 2 1
8:00 AM to 8:15 AM to 8:30 AM to 8:34 AM to 9:45 AM to 9:30 AM to 9:345 AM to 9:35 AM to 10:30 AM to 10:15 AM to 10:30 AM to 11:30 AM to 11:30 AM to 12:30 PM to 12:45 PM to 12:45 PM to 12:00 PM to 12:45 PM to 1:00 PM to	9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM 11:45 AM 11:45 AM 12:30 PM 12:45 PM 12:30 PM 1:45 PM 1:30 PM	0 1 1 3 4 4 6 6 4 4 2 6 8 8 8 2 2 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 1\\2\\4\\5\\10\\0\\9\\9\\3\\3\\2\\0\\1\\4\\4\\6\\5\\2\\2\\0\end{array} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37 54 70 106 108 137 147 133 147 133 147 151 167 163 144 122 97 92 75 56 30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 57 73 111 116 151 148 161 158 170 156 134 105 99 78 59 31
Peak Hour Saturday Saturday	Start Time 10:45 AM 11:00 AM	2 6	0 0	0 0	0 0	0 0	0 0	0 0	0 0	2 0	0 0	0 0	0 0	167 180	0 0	0 0	0 0	171 186

Mulryan Engin Hamlet:	Village of	P.C. Great Neck													S	tudy Inte	rsection	n No. 5S
Project No. South Site Acc Middle Neck I		U-Turn	Right	Southbound Through	Left	U-Turn	Right	Westbound Through	Left	U-Turn	Right	Northbound Through	Left	U-Turn	Right	Eastbound Through	Left	Vehicle Total
Saturday Turning Movement Counts	8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 10:35 AM 10:30 AM 11:35 AM 11:30 AM 11:35 AM 11:30 AM 11:35 AM 11:35 PM 12:30 PM 12:30 PM 1:35 PM 1:30 PM 1:35 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43 53 63 79 92 108 97 108 97 111 83 110 97 100 98 107 98 104 98 107 98 104 98 104 98 104 98 104 98 104 98 104 98 104 98 104 99 98 105 99 93	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37 56 62 75 85 100 108 88 93 105 93 105 90 89 90 89 92 87 75 98 81 07 88 88 86 107	0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 1 2 1 0 0 1 0 0 1 0 0 2 2 0 1 0 0 0 0		0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80 109 125 156 179 194 217 186 208 196 196 196 196 189 184 202 196 188 171 189 184 214 203 188 188 198
8:00 AM to 8:15 AM to 8:30 AM to 9:00 AM to 9:01 AM to 9:15 AM to 9:30 AM to 9:33 AM to 9:34 AM to 10:30 AM to 10:35 AM to 10:36 AM to 11:30 AM to 11:20 AM to 12:30 PM to 12:32 PM to 12:32 PM to 12:30 PM to 1:00 PM to	9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:30 AM 11:53 AM 11:53 AM 11:53 AM 11:53 AM 11:54 AM 11:54 AM 12:00 PM 12:45 PM 12:30 PM 12:45 PM 1:30 PM		1 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2	238 288 327 390 408 399 401 399 401 399 378 399 378 379 382 403 426 454 446 439 430	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	230 278 322 368 381 391 403 381 403 386 396 374 377 376 338 343 349 355 375 375 375 379 395	0 0 1 1 1 1 1 1 2 2 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 3 4 4 3 1 1 1 1 3 4 4 5 3 1 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 2 2 2 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0	470 569 654 776 805 807 786 794 788 788 788 788 788 788 788 788 788 78
Peak Hour PHF Saturday 0.899	Start Time 12:30 PM	0	1	446	0	0	0	0	0	0	0	388	1	0	1	0	1	838
			Pede	estrian 1			Pede	strian 2			Pede	strian 3			Pede	strian 4		Total
Saturday Turning Movement Counts	8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:15 AM 10:00 AM 10:30 AM 10:30 AM 11:00 AM 11:35 AM 11:30 AM 11:35 AM 12:30 PM 12:45 PM 1:32 PM	0 3 0				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 1 1 1 2 4 0 0 1 0 3 1 0 3 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0				6 3 7 20 24 17 35 38 40 36 26 36 52 34 45 53 31 13 21 27 0 6 1				6 4 9 24 27 20 41 41 43 37 30 42 53 37 48 54 32 15 22 21 28 0 11 1
$\begin{array}{cccc} 8.00 \ \text{AM} & \text{to} \\ 8.15 \ \text{AM} & \text{to} \\ 8.30 \ \text{AM} & \text{to} \\ 8.45 \ \text{AM} & \text{to} \\ 9.00 \ \text{AM} & \text{to} \\ 9.30 \ \text{AM} & \text{to} \\ 9.30 \ \text{AM} & \text{to} \\ 9.33 \ \text{AM} & \text{to} \\ 10.01 \ \text{AM} & \text{to} \\ 10.15 \ \text{AM} & \text{to} \\ 10.15 \ \text{AM} & \text{to} \\ 11.50 \ \text{AM} & \text{to} \\ 11.45 \ \text{AM} & \text{to} \\ 11.45 \ \text{AM} & \text{to} \\ 11.20 \ \text{AM} & \text{to} \\ 11.20 \ \text{AM} & \text{to} \\ 11.2200 \ \text{PM} & \text{to} \\ 12.20 \ \text{PM} & \text{to} \\ 12.30 \ \text{PM} & \text{to} \\ 12.00 \ \text{PM} & \text{to} \\ 10.00 \ \text{PM} & \text{to} \ \text{PM} & \text{to} \\ 10.00 \ \text{PM} & \text{to} \ \text{PM} & \text{to} \ \to} \ 10.00 \ \text{to} \ \to} \ 10.00 \ to$	9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM 11:45 AM 11:45 AM 12:30 PM 12:45 PM 1:30 PM 1:45 PM 1:30 PM	4 6 7 8 8 9 8 10 10 7 10 6 3 4 1 1 1 1 1 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 5 8 7 6 5 1 4 5 4 7 5 4 6 4 3 3 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36 54 96 114 130 149 140 138 150 148 163 142 118 86 82 69 54 34	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43 64 80 112 129 145 162 162 162 162 162 171 149 90 86 71 60 40
Peak Hour Saturday Saturday	Start Time 10:45 AM 11:00 AM	6 3	0 0	0 0	0 0	0 0	0 0	0 0	0 0	7 5	0 0	0 0	0 0	167 184	0 0	0 0	0 0	180 192

Mulryan Engin	Village of	P.C. Great Neck													S	tudy Inte	rsection	1 No. 6S
Project No. South Site Acc Middle Neck I		U-Turn	Right	Southbound Through	Left	U-Turn	Right	Westbound Through	Left	U-Turn	Right	Northbound Through	Left	U-Turn	Right	Eastbound Through	Left	Vehicle Total
Saturday Turning Movement Counts	8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 10:35 AM 10:30 AM 11:35 AM 11:35 AM 11:35 AM 11:35 AM 11:35 AM 11:35 AM 11:35 AM 12:30 PM 12:30 PM 1:35 PM 1:35 PM 1:35 PM 1:30 PM 1:35 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 2 10 6 3 2 4 5 2 2 2 2 2 2 2 1 0 1 2 2 1 1 1 1	42 57 61 85 93 99 102 86 105 86 105 86 105 86 93 93 94 79 111 103 119 104 121 101 107 92	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		35 57 63 77 79 96 109 93 99 90 95 96 95 96 94 86 97 91 80 93 106 104 95 87 116	0 10 21 14 2 12 10 1 6 3 5 1 1 4 4 3 3 1 2 1 2 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 2 4 5 2 0 3 10 3 1 2 10 0 3 6 3 2 4 7 19 3 0 0		1 0 1 5 2 0 0 0 1 0 0 5 0 0 1 2 1 3 5 1 0 1	80 116 138 183 194 200 212 214 229 206 198 211 193 186 211 193 187 210 191 191 191 222 223 202 197 216
8:00 AM to 8:15 AM to 8:30 AM to 9:00 AM to 9:01 AM to 9:15 AM to 9:30 AM to 9:33 AM to 9:34 AM to 10:00 AM to 10:30 AM to 11:30 AM to 11:32 AM to 11:32 AM to 11:32 AM to 12:32 PM to 12:32 PM to 12:32 PM to 12:32 PM to 12:30 PM to 1:00 PM to	9:00 AM 9:15 AM 9:15 AM 9:45 AM 10:00 AM 10:30 AM 11:55 AM 11:55 AM 11:55 AM 11:55 AM 11:55 PM 12:30 PM 12:45 PM 1:30 PM 1:30 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 18 21 21 15 14 13 13 9 6 6 6 7 5 4 4 5 7 7 6 5 5	230 273 309 347 379 392 400 396 384 394 386 387 380 388 380 387 412 437 447 445 433 421	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	232 276 315 361 377 397 400 381 383 380 375 371 373 388 354 368 354 368 354 368 354 370 388 398 398 392 402	32 46 49 41 32 28 25 29 20 15 15 15 10 11 10 12 14 11 9 7 6 11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 11 13 11 10 15 16 17 16 13 15 19 12 14 15 16 32 33 29 22	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 7 8 7 2 1 1 1 6 5 5 5 1 3 4 7 11 10 9 7	517 631 715 789 820 855 847 808 788 788 788 777 776 774 810 846 889 900 875 868
Peak Hour PHF Saturday 0.889	Start Time 12:30 PM	0	7	445	0	0	0	0	0	0	0	398	7	0	33	0	10	900
			Pede	estrian 1			Pede	strian 2			Pede	estrian 3			Pede	strian 4		Total
Saturday Turning Movement Counts	8:00 AM 8:15 AM 8:45 AM 9:00 AM 9:15 AM 9:15 AM 9:15 AM 10:00 AM 10:30 AM 10:30 AM 11:00 AM 11:15 AM 11:30 AM 11:15 AM 12:15 PM 12:45 PM 1:30 PM	5 5 3				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1 0 2 7 2 1 1 0 0 2 5 7 4 3 4 2 2 1 2 1 2 1 2 1				4 5 7 24 23 15 24 21 47 29 24 47 29 24 27 29 51 52 37 19 16 21 0 6 1				5 5 10 27 25 33 25 55 55 32 26 31 39 63 59 40 23 21 17 23 1 8 2
8:00 AM 10 8:15 AM 10 8:30 AM 10 8:45 AM 10 9:00 AM 10 9:15 AM 10 9:33 AM 10 9:34 AM 10 10:15 AM 10 10:15 AM 10 11:30 AM 10 11:30 AM 10 12:30 PM 10 12:32 PM 10 12:32 PM 10 12:34 PM 10 1:30 AM 10	9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM 11:45 AM 11:30 AM 12:30 PM 12:45 PM 12:30 PM 1:45 PM 1:30 PM 1:45 PM	5 7 10 15 15 20 15 14 12 14 15 13 8 7 4 4 4 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 10 11 12 11 4 2 3 7 14 18 19 18 13 11 9 7 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 59 69 86 83 107 121 121 127 131 159 159 125 92 71 73 56 43 28	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	47 69 89 112 110 138 145 138 144 128 159 192 201 185 145 145 107 84 84 84 84 84 9 34
Peak Hour Saturday Saturday	Start Time 10:45 AM 11:00 AM	15 13	0 0	0 0	0 0	0 0	0 0	0 0	0 0	18 19	0 0	0 0	0 0	159 169	0 0	0 0	0 0	192 201

Mulryan Engin Hamlet:	Village of														S	study Inter	rsection	1 No. 7S
Project No. Allenwood Ro Middle Neck I		U-Turn	Right	Southbound Through	Left	U-Turn	Right	Westbound Through	Left	U-Turn	Right	Northbound Through	Left	U-Turn	Right	Eastbound Through	Left	Vehicle Total
Saturday Turning Movement Counts	8:00 AM 8:15 AM 8:15 AM 9:00 AM 9:00 AM 9:00 AM 9:00 AM 9:30 AM 10:35 AM 10:30 AM 10:35 AM 10:30 AM 11:30 AM 11:30 AM 11:35 PM 12:30 PM 12:30 PM 1:35 PM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 4 1 5 3 5 3 5 3 5 1 4 3 7 1 3 7 1 3 1 5 2 1 2 4 1 5 2 1 2 4 1 5 2 1 4 3 7 1 5 2 1 4 3 5 3 5 1 5 3 5 5 1 5 1 5 1 5 1 5 1 5 1	45 51 66 72 94 87 101 99 108 101 108 101 108 94 101 101 101 101 101 111 111 143 102 108 9	1 0 2 0 0 1 3 0 1 0 1 0 1 2 0 0 1 0 1 2 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0		0 1 2 3 0 1 1 2 2 2 1 0 1 2 2 1 0 1 2 1 5 1 1 1 5 1 1 1 3 2		10 7 3 4 11 13 15 14 9 11 13 9 7 9 11 5 5 6 12 8 7 9 8		1 3 1 5 6 7 12 4 7 3 6 9 5 4 8 15 13 12 10 8 8	37 57 74 95 95 99 115 105 105 105 106 97 100 101 105 100 101 105 99 99 92 80 97 101 104 92 86 119	0 0 2 3 3 0 0 1 4 4 1 2 5 5 3 3 2 5 5 3 1 1 0 0 0 3 3 3 2 2 5 5 3 1 1 0 0 0 1 1 4 4 2 3 3 0 0 0 0 0 2 2 3 3 0 0 0 0 0 0 0 0		1 0 1 2 1 4 1 0 0 0 0 1 1 1 1 1 1 1 2 1 0 0 0 0 1 1 0 0 0 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	97 125 152 180 228 206 246 233 215 228 222 233 226 210 204 224 224 247 241 222 247 241 221 230
Still SAM to 8:15 AM to 8:30 AM to 9:00 AM to 9:01 AM to 9:30 AM to 9:33 AM to 9:34 AM to 9:35 AM to 10:35 AM to 10:35 AM to 10:36 AM to 11:30 AM to 11:32 AM to 11:34 AM to 12:32 PM to 12:32 PM to 12:32 PM to 12:30 PM to 1:40 OPM to	9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:30 AM 11:53 AM 11:53 AM 11:53 AM 11:53 AM 11:54 AM 11:54 AM 12:00 PM 12:45 PM 12:30 PM 12:45 PM 1:30 PM		10 13 14 16 16 14 13 10 12 15 13 14 12 10 11 9 10 9 8	234 283 319 354 381 415 418 425 405 416 404 385 386 396 423 452 452 452 452 454 454	3 4 4 2 3 4 4 5 4 3 3 3 2 4 6 6 5 3 1 1		3 6 5 4 6 7 7 5 4 4 4 5 9 8 8 8 8 4 6 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24 28 32 42 53 51 49 47 42 40 38 36 32 30 27 28 31 33 36 32		11 19 18 21 27 30 29 30 26 20 25 23 24 26 32 40 49 53 48 43 38	263 321 363 404 414 421 413 413 408 404 404 397 388 388 388 388 359 368 359 368 359 369 369 359 369 369 383 401	2 5 6 8 6 8 7 4 6 7 9 13 11 9 4 4 4 6 9		2 3 4 8 8 6 5 1 0 1 2 3 4 4 4 3 3 4 4 4 3 3	0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 0 3 4 4 4 4 2 3 4 4 4 3 2 2 3 3 3 3 3 3	554 685 766 916 970 952 938 899 891 864 864 867 934 982 934 982 956 945
Peak Hour PHF Saturday 0.893	Start Time 12:15 PM	0	9	486	5	0	8	0	31	0	53	382	4	0	4	1	3	986
			Pede	strian 1			Pede	strian 2			Pede	strian 3			Pede	estrian 4		Total
Saturday Turning Movement Counts	8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:15 AM 10:00 AM 10:30 AM 10:30 AM 11:00 AM 11:35 AM 11:30 AM 11:35 AM 12:30 PM 12:45 PM 1:32 PM 1:34 PM	2 1 3 5 12 5 2 9 17 4 10 5 7 9 4 13 6 7 4 1 7 1 0 1				12 5 7 11 21 22 13 14 24 16 15 15 25 21 14 15 19 11 12 10 12 10 12 11 8				0 0 2 1 4 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				14 6 10 18 34 31 26 23 44 20 25 20 22 34 25 27 21 26 15 13 17 13 19 9
$\begin{array}{cccc} 8.00 \ \mathrm{AM} & \mbox{to} \\ 8.15 \ \mathrm{AM} & \mbox{to} \\ 8.30 \ \mathrm{AM} & \mbox{to} \\ 8.45 \ \mathrm{AM} & \mbox{to} \\ 9.00 \ \mathrm{AM} & \mbox{to} \\ 9.30 \ \mathrm{AM} & \mbox{to} \\ 9.33 \ \mathrm{AM} & \mbox{to} \\ 9.345 \ \mathrm{AM} & \mbox{to} \\ 10.05 \ \mathrm{AM} & \mbox{to} \\ 10.15 \ \mathrm{AM} & \mbox{to} \\ 10.35 \ \mathrm{AM} & \mbox{to} \\ 11.30 \ \mathrm{AM} & \mbox{to} \\ 11.30 \ \mathrm{AM} & \mbox{to} \\ 11.20 \ \mathrm{PM} & \mbox{to} \\ 12.20 \ \mathrm{PM} & \mbox{to} \\ 12.30 \ \mathrm{PM} & \mbox{to} \\ 12.35 \ \mathrm{PM} & \mbox{to} \\ 12.345 \ \mathrm{PM} & \mbox{to} \\ 1.00 \ \mathrm{PM} & \mbox{to} \ \mathrm{PM} & to$	9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM 11:45 AM 11:30 AM 12:30 PM 12:45 PM 12:30 PM 1:45 PM 1:45 PM 1:45 PM	11 21 25 34 38 43 42 40 36 31 25 33 32 30 18 19 13 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 44 61 70 73 67 69 70 61 70 76 75 75 69 57 57 52 54 54 54 54 54 54	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 7 8 6 8 4 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	48 68 93 109 114 124 113 112 109 87 101 101 101 108 107 99 89 75 71 108 54 50
Peak Hour Saturday Saturday	Start Time 9:15 AM 11:00 AM	43 33	0 0	0 0	0 0	73 75	0 0	0 0	0 0	8 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	124 108

Mulryan Enginee Hamlet: Village of G		•															Table	e No. 1
Project No. M15-012 Growth Factor: No. of Years: Growth Rate:	1.00% 5 1.050					Enter Exit Total		Trip Gener: Apartment PM 75 41 116]				Enter Exit Total		Frip Genera Change 67 U PM 27 15 42		
Old Mill/Piccadilly Middle Neck R		U-Turn	South Right	bound Through	Left	U-Turn	West Right	bound Through	Left	U-Turn	North Right	ibound Through	Left	U-Turn	Eastb Right	ound Through	Left	Total
Other Planned Projects Site Generated Volume	AM PM SAT			2 4 3								3 3 3	2 1 1		1 4 2			9 12 9
Site Generated Volume	AM PM SAT	 	 	5 10 12	 	 	 	 	0 1 1	 	0 0 0	3 4 5	1 1 1	 	1 2 3		 	11 19 21
Existing AM Peak Hour Existing PM Peak Hour Existing Sat Peak Hour	7:30 AM 5:00 PM 12:30 PM	0 0 0	77 56 36	599 501 374	9 8 1	0 0 0	15 14 2	43 32 9	75 44 14	0 0 0	23 47 21	528 583 339	108 101 47	0 0 0	166 111 88	31 24 19	64 70 40	1738 1591 990
AM Adjusted Flow Rate PM Adjusted Flow Rate Sat Adjusted Flow Rate	0.831 0.963 0.967	 	93 58 37	721 520 387	11 8 1	 	18 15 2	52 33 9	90 46 14	 	28 49 22	636 605 351	130 105 49	 	200 115 91	37 25 20	77 73 41	2092 1652 1024
No Build AM No Build PM No Build Sat	1.050 1.050 1.050		97 61 39	759 551 409	11 9 1		19 15 2	54 35 10	95 48 15		29 51 23	671 639 371	139 111 52		211 125 98	39 26 21	81 76 43	2205 1747 1084
Build AM Peak Hour Build PM Peak Hour Build Sat Peak Hour		 	97 61 39	764 561 421	11 9 1	 	19 15 2	54 35 10	95 49 16	 	29 52 23	674 643 376	139 112 53	 	212 127 100	39 26 21	81 76 43	2216 1766 1105
North Site Acce Middle Neck R		U-Turn	South Right	bound Through	Left	U-Turn	West Right	bound Through	Left	U-Turn	North Right	ibound Through	Left	U-Turn	Eastb Right	ound Through	Left	Total
Other Planned Projects Site Generated Volume	AM PM SAT			3 8 5								6 4 4						9 12 9
Site Generated Volume	AM PM SAT	 	 	7 14 15		 	 	 		 	 		 	 	65 27 32	 	11 14 17	83 55 64
Existing AM Peak Hour Existing PM Peak Hour Existing Sat Peak Hour	7:30 AM 5:00 PM 12:15 PM	0 0 0	3 5 2	795 622 467	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	629 703 414	0 4 0	0 0 0	18 2 6	0 0 0	1 1 1	1446 1337 890
AM Adjusted Flow Rate PM Adjusted Flow Rate Sat Adjusted Flow Rate	0.820 0.963 0.923	 	4 5 2	970 646 506	0 0 0	 	0 0 0	0 0 0	0 0 0	 	0 0 0	767 730 448	0 4 0	 	22 2 6	0 0 0	1 1 1	1764 1388 964
No Build AM No Build PM No Build Sat	1.050 1.050 1.050		4 5 2	1021 686 536	0 0 0		0 0 0	0 0 0	0 0 0	 	0 0 0	812 770 475	0 4 0		23 2 7	0 0 0	1 1 1	1861 1469 1021
Build AM Peak Hour Build PM Peak Hour Build Sat Peak Hour			0 0 0	1028 700 551	0 0 0		0 0 0	0 0 0	0 0 0	 	0 0 0	812 770 475	0 0 0		65 27 32	0 0 0	11 14 17	1916 1511 1075
Wooleys Lane Middle Neck R		U-Turn	South Right	bound Through	Left	U-Turn	West Right	ibound Through	Left	U-Turn	North Right	ibound Through	Left	U-Turn	Eastb Right	ound Through	Left	Total
Other Planned Projects Site Generated Volume	AM PM SAT			3 8 5								6 4 4						9 12 9
Site Generated Volume	AM PM SAT		 	30 23 26			 						 				 	30 23 26
Existing AM Peak Hour Existing PM Peak Hour Existing Sat Peak Hour	7:30 AM 5:00 PM 12:30 PM	0 0 0	0 0 0	799 600 473	76 44 26	0 0 0	77 57 25	0 0 0	39 34 26	0 0 0	32 30 14	590 686 386	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1613 1451 950
AM Adjusted Flow Rate PM Adjusted Flow Rate Sat Adjusted Flow Rate	0.800 0.950 0.935		0 0 0	999 632 506	95 46 28		96 60 27	0 0 0	49 36 28		40 32 15	737 722 413	0 0 0		0 0 0	0 0 0	0 0 0	2016 1528 1016
No Build AM No Build PM No Build Sat	1.050 1.050 1.050	 	0 0 0	1052 671 536	100 49 29	 	101 63 28	0 0 0	51 38 29	 	42 33 16	780 763 437	0 0 0	 	0 0 0	0 0 0	0 0 0	2126 1616 1076
Build AM Peak Hour Build PM Peak Hour Build Sat Peak Hour		 	0 0 0	1081 695 563	100 49 29	 	101 63 28	0 0 0	51 38 29	 	42 33 16	780 763 437	0 0 0	 	0 0 0	0 0 0	0 0 0	2155 1640 1102

Mulryan Enginee Hamlet: Village of Gr	ering, P.C	•															Table	e No. 1
Project No. M15-012 Growth Factor: No. of Years: Growth Rate:	1.00% 5 1.050					Enter Exit Total		Trip Gener Apartment PM 75 41 116]				Enter Exit Total		Trip Gener Change 67 U PM 27 15 42]
Millbrook Cou Middle Neck R		U-Turn	South Right	ibound Through	Left	U-Turn	West Right	bound Through	Left	U-Turn	North Right	ibound Through	Left	U-Turn	Easth Right	oound Through	Left	Total
Other Planned Projects Site Generated Volume	AM PM SAT		<u> </u>	3 8 5							E	6 4 4			C			9 12 9
Site Generated Volume	AM PM SAT			30 23 26								 						30 23 26
Existing AM Peak Hour Existing PM Peak Hour Existing Sat Peak Hour	7:45 AM 5:00 PM 12:15 PM	0 0 0	4 4 7	796 607 452	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	564 676 399	8 4 0	0 0 0	12 3 7	0 0 0	5 2 5	1389 1296 870
AM Adjusted Flow Rate PM Adjusted Flow Rate Sat Adjusted Flow Rate	0.843 0.947 0.933		5 4 7	944 641 484	0 0 0		0 0 0	0 0 0	0 0 0	 	0 0 0	669 714 427	9 4 0		14 3 7	0 0 0	6 2 5	1648 1368 932
No Build AM No Build PM No Build Sat	1.050 1.050 1.050	 	5 4 8	995 681 513	0 0 0	 	0 0 0	0 0 0	0 0 0	 	0 0 0	709 753 453	10 4 0	 	15 3 8	0 0 0	6 2 6	1739 1448 988
Build AM Peak Hour Build PM Peak Hour Build Sat Peak Hour			2 2 4	1024 704 540	0 0 0		0 0 0	0 0 0	0 0 0		0 0 0	709 753 453	5 2 0		7 2 4	0 0 0	3 1 3	1751 1464 1003
South Site Acce Middle Neck R		U-Turn	South Right	ibound Through	Left	U-Turn	West Right	bound Through	Left	U-Turn	North Right	ibound Through	Left	U-Turn	Easth Right	ound Through	Left	Total
Other Planned Projects Site Generated Volume	AM PM SAT			3 8 5								6 4 4						9 12 9
Site Generated Volume	AM PM SAT		18 38 44	23 10 11		 	 			 	 		1 38 5	 				42 85 60
Existing AM Peak Hour Existing PM Peak Hour Existing Sat Peak Hour	7:45 AM 5:00 PM 12:30 PM	0 0 0	5 0 1	839 637 446	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	600 678 388	0 2 1	0 0 0	4 0 1	0 0 0	1 0 1	1449 1317 838
AM Adjusted Flow Rate PM Adjusted Flow Rate Sat Adjusted Flow Rate	0.850 0.949 0.899	 	6 0 1	987 671 496	0 0 0		0 0 0	0 0 0	0 0 0	 	0 0 0	706 715 432	0 2 1	 	5 0 1	0 0 0	1 0 1	1704 1388 932
No Build AM No Build PM No Build Sat	1.050 1.050 1.050		6 0 1	1039 713 526	0 0 0		0 0 0	0 0 0	0 0 0	 	0 0 0	747 754 457	0 2 1		5 0 1	0 0 0	1 0 1	1798 1469 988
Build AM Peak Hour Build PM Peak Hour Build Sat Peak Hour		 	31 45 51	1062 723 537	0 0 0	 	0 0 0	0 0 0	0 0 0	 	0 0 0	747 754 457	6 46 6	 	0 0 0	0 0 0	0 0 0	1845 1568 1052
Clover Drive Middle Neck R		U-Turn	Soutl Right	ibound Through	Left	U-Turn	West Right	bound Through	Left	U-Turn	North Right	ibound Through	Left	U-Turn	Easth Right	oound Through	Left	Total
Other Planned Projects Site Generated Volume	AM PM SAT		2 -4 -2	1 5 3								4 2 3	-8 -2 0		-1 0 -7		-3 -3 -3	-5 -2 -6
Site Generated Volume	AM PM SAT			23 10 11			 				 	0 14 2	 					23 23 13
Existing AM Peak Hour Existing PM Peak Hour Existing Sat Peak Hour	7:45 AM 5:00 PM 12:30 PM	0 0 0	50 22 7	816 633 445	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	578 691 398	57 21 7	0 0 0	18 13 33	0 0 0	28 5 10	1547 1385 900
AM Adjusted Flow Rate PM Adjusted Flow Rate Sat Adjusted Flow Rate	0.873 0.911 0.889		57 24 8	935 695 500	0 0 0		0 0 0	0 0 0	0 0 0		0 0 0	662 758 448	65 23 8		21 14 37	0 0 0	32 5 11	1772 1520 1012
No Build AM No Build PM No Build Sat	1.050 1.050 1.050	 	62 21 6	982 734 528	0 0 0	 	0 0 0	0 0 0	0 0 0	 	0 0 0	699 798 473	61 22 8	 	21 15 32	0 0 0	31 3 9	1856 1594 1057
Build AM Peak Hour Build PM Peak Hour Build Sat Peak Hour		 	62 21 6	1005 744 539	0 0 0	 	0 0 0	0 0 0	0 0 0	 	0 0 0	700 812 475	61 22 8	 	21 15 32	0 0 0	31 3 9	1879 1617 1069

Mulryan Enginee Hamlet: Village of Gr Project No. M15-012		•															Table	e No. 1
Growth Factor: No. of Years: Growth Rate:	1.00% 5 1.050					Enter Exit Total		Trip Gener: Apartment PM 75 41 116]				Enter Exit Total		Trip Gener Change 67 I PM 27 15 42]
Allenwood Roa Middle Neck Ro		U-Turn	Sout Right	hbound Through	Left	U-Turn	West Right	bound Through	Left	U-Turn	North Right	ibound Through	Left	U-Turn	East Right	bound Through	Left	Total
Other Planned Projects Site Generated Volume Site Generated Volume	AM PM SAT AM PM	 	1 1 1	4 4 3 23 10		 		 				3 7 5 0 14	3 3 8 		8 8 5 		4 4 3 	23 27 25 23 23
Existing AM Peak Hour Existing PM Peak Hour Existing Sat Peak Hour	SAT 7:30 AM 5:00 PM 12:15 PM	0 0 0	22 23 9	11 794 599 486	25 11 5	0 0 0	30 12 8	1 0 0	97 42 31	0 0 0	49 77 53	2 612 730 382	2 10 4	0 0 0	2 6 4	0 4 1	5 4 3	13 1639 1518 986
AM Adjusted Flow Rate PM Adjusted Flow Rate Sat Adjusted Flow Rate	0.913 0.944 0.893	 	24 24 10	870 635 544	27 12 6	 	33 13 9	1 0 0	106 44 35	 	54 82 59	671 773 428	2 11 4	 	2 6 4	0 4 1	5 4 3	1796 1608 1104
No Build AM No Build PM No Build Sat	1.050 1.050 1.050		1 1 1	918 670 574	29 12 6		35 13 9	0 0 0	112 47 36		56 86 62	707 819 454	3 3 8		8 8 5	0 0 0	4 4 3	1872 1663 1160
Build AM Peak Hour Build PM Peak Hour Build Sat Peak Hour		 	1 1 1	941 680 585	29 12 6		35 13 9	0 0 0	112 47 36	 	56 86 62	708 832 456	3 3 8	 	8 8 5	0 0 0	4 4 3	1895 1686 1172

Mulryan Enginee		•															Table	e No. 2
Hamlet: Village of Gre Project No. M15-012	eat Neck																	
Growth Factor: No. of Years: Growth Rate:	1.00% 5 1.050					Enter Exit Total		Trip Gener Apartment PM 75 41 116]				Enter Exit Total		Trip Gener Change 67 PM 27 15 42]
Old Mill/Piccadilly Middle Neck Ro		U-Turn	South Right	hbound Through	Left	U-Turn	West Right	bound Through	Left	U-Turn	Nortl Right	hbound Through	Left	U-Turn	Easth Right	oound Through	Left	Total
AM Peak Hour Distribution	Entering Exiting			73%					6%		1%	12%	2%		16%			95% 15%
PM Peak Hour Distribution	Entering Exiting			39%					3%		2%	29%	5%		9%			50% 35%
Saturday Peak Hour Distribution	Entering Exiting			69%					5%		2%	29%	5%		15%			90% 35%
Site Generated Volume	AM PM SAT	 	 	5.1 10.4 11.8	 		 	 	0.4 0.8 0.9	 	0.2 0.3 0.3	3.3 4.3 4.9	0.5 0.7 0.8	 	1.1 2.3 2.6	 	 	11 19 21
North Site Acces Middle Neck Ro		U-Turn	Soutl Right	hbound Through	Left	U-Turn	West Right	bound Through	Left	U-Turn	Nortl Right	hbound Through	Left	U-Turn	Eastl Right	oound Through	Left	Total
AM Peak Hour Distribution	Entering Exiting			95%				G				a			85%	6	15%	95% 100%
PM Peak Hour Distribution	Entering Exiting			50%											65%		35%	50% 100%
Saturday Peak Hour Distribution	Entering Exiting			90%											65%		35%	90% 100%
Site Generated Volume	AM PM SAT			6.7 13.5 15.3				 							64.6 26.7 31.9	 	11.4 14.4 17.2	83 55 64
Wooleys Lane Middle Neck Ro		U-Turn	South Right	hbound Through	Left	U-Turn	West Right	tbound Through	Left	U-Turn	Nortl Right	hbound Through	Left	U-Turn	Easth Right	oound Through	Left	Total
AM Peak Hour Distribution	Entering Exiting			95% 85%														95% 85%
PM Peak Hour Distribution	Entering Exiting			50% 65%														50% 65%
Saturday Peak Hour Distribution	Entering Exiting			90% 65%														90% 65%
Site Generated Volume	AM PM SAT			29.6 23.3 26.4				 							 	 		30 23 26
Millbrook Cour Middle Neck Ro		U-Turn	Soutl Right	hbound Through	Left	U-Turn	West Right	bound Through	Left	U-Turn	Nortl Right	hbound Through	Left	U-Turn	Eastl Right	oound Through	Left	Total
AM Peak Hour Distribution	Entering Exiting			95% 85%														95% 85%
PM Peak Hour Distribution	Entering Exiting			50% 65%														50% 65%
Saturday Peak Hour Distribution	Entering Exiting			90% 65%														90% 65%
Site Generated Volume	AM PM SAT			29.6 23.3 26.4				 										30 23 26
South Site Acces Middle Neck Ro		U-Turn	South Right	hbound Through	Left	U-Turn	West Right	bound Through	Left	U-Turn	Nortl Right	hbound Through	Left	U-Turn	Easth Right	oound Through	Left	Total
AM Peak Hour Distribution	Entering Exiting		95%	85%			- 1.5m		Juit		-ugut		5%		₅ m	ougu	Juit	100% 85%
PM Peak Hour Distribution	Entering Exiting		50%	65%									50%					100% 65%
Saturday Peak Hour Distribution	Entering Exiting		90%	65%									10%					100% 65%
Site Generated Volume	AM PM SAT	 	18.1 37.5 44.1	23.0 9.8 11.1	 		 	 	 	 	 		1.0 37.5 4.9	 	 	 	 	42 85 60

Mulryan Engineer Hamlet: Village of Gree	ring, P.C.	•															Tabl	e No. 2
Project No. M15-012	eat Neck																	
No. of Years:	1.00% 5 1.050					Enter Exit Total		Trip Gener: Apartment PM 75 41 116]				Enter Exit Total		Trip Gener Change 67 PM 27 15 42]
Clover Drive a				bound				ibound				ibound				tbound		
Middle Neck Ro	oad	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	Total
AM Peak Hour Distribution	Entering Exiting			85%								5%						5% 85%
PM Peak Hour Distribution	Entering Exiting			65%								50%						50% 65%
Saturday Peak Hour Distribution	Entering Exiting			65%								10%						10% 65%
Site Generated Volume	AM PM SAT		 	23.0 9.8 11.1			 					0.4 13.5 1.7	 					23 23 13
Allenwood Road				nbound				tbound				ibound				tbound		
Middle Neck Ro	oad	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	U-Turn	Right	Through	Left	Total
AM Peak Hour Distribution	Entering Exiting			85%								5%						5% 85%
PM Peak Hour Distribution	Entering Exiting			65%								50%						50% 65%
Saturday Peak Hour Distribution	Entering Exiting			65%								10%						10% 65%
Site Generated Volume	AM PM SAT			23.0 9.8 11.1								0.4 13.5 1.7						23 23 13

Mulryan Engineering, P.C.

Hamlet: Village of Great Neck Project No. M15-012

	Trip Gen	eration Cal	culations		
Proposed Development					
Land Use Code:	220				
Land Use Description:	Apartments				
Independent Variable:	Number of Dwe	lling Units			
Variable:	119	-			
Source:	Institute of Tran	sportation E	Engineers, Trip (Generation, 9th	Edition 2012
	Directional Distribution	Rate	Standard Deviation	Adjustment Factor	Driveway Volume
7-9 AM Peak Hour Enter	20%	0.10	0.00	1.00	12
7-9 AM Peak Hour Exit	<u>80%</u>	0.41	0.00	1.00	<u>49</u>
7-9 AM Peak Hour Total	100%	0.51	0.73	1.00	61
AM Peak Hour Enter	29%	0.16	0.00	1.00	19
AM Peak Hour Exit	<u>71%</u>	<u>0.39</u>	0.00	1.00	<u>46</u>
AM Peak Hour Total	100%	0.55	0.76	1.00	65
PM Peak Hour Enter	61%	0.41	0.00	1.00	49
PM Peak Hour Exit	<u>39%</u>	0.26	0.00	1.00	<u>31</u>
PM Peak Hour Total	100%	0.67	0.85	1.00	80
4-6 PM Peak Hour Enter	65%	0.40	0.00	1.00	48
4-6 PM Peak Hour Exit	<u>35%</u>	0.22	0.00	1.00	<u>26</u>
4-6 PM Peak Hour Total	100%	0.62	0.82	1.00	74
Saturday Peak Hour Enter	50%	0.26	0.00	1.00	31
Saturday Peak Hour Exit	<u>50%</u>	0.26	0.00	1.00	<u>31</u>
Saturday Peak Hour Total	100%	0.52	0.74	1.00	62

Mulryan Engineering, P.C.Hamlet:Village of Great Neck Project No. M15-012

	Trip Gen	eration Cal	culations		
Proposed Development					
Land Use Code:	220				
Land Use Description:	Apartments				
Independent Variable:	Number of Dwe	elling Units			
Variable:	186				
Source:	Institute of Tran	sportation E	Engineers, Trip	Generation, 9th	Edition 2012
	Directional Distribution	Rate	Standard Deviation	Adjustment Factor	Driveway Volume
7-9 AM Peak Hour Enter	20%	0.10	0.00	1.00	19
7-9 AM Peak Hour Exit	80%	0.41	0.00	1.00	<u>76</u>
7-9 AM Peak Hour Total	100%	0.51	0.73	1.00	95
AM Peak Hour Enter	29%	0.16	0.00	1.00	30
AM Peak Hour Exit	<u>71%</u>	<u>0.39</u>	0.00	1.00	<u>73</u>
AM Peak Hour Total	100%	0.55	0.76	1.00	102
PM Peak Hour Enter	61%	0.41	0.00	1.00	76
PM Peak Hour Exit	<u>39%</u>	0.26	0.00	1.00	<u>49</u>
PM Peak Hour Total	100%	0.67	0.85	1.00	125
4-6 PM Peak Hour Enter	65%	0.40	0.00	1.00	75
4-6 PM Peak Hour Exit	<u>35%</u>	0.22	0.00	1.00	<u>40</u>
4-6 PM Peak Hour Total	100%	0.62	0.82	1.00	115
Saturday Peak Hour Enter	50%	0.26	0.00	1.00	48
Saturday Peak Hour Exit	<u>50%</u>	0.26	0.00	1.00	<u>48</u>
Saturday Peak Hour Total	100%	0.52	0.74	1.00	97

Mulryan Engineering, P.C.

Hamlet: Village of Great Neck Project No. M15-012

	Trip Gen	eration Cal	lculations		
Proposed Development					
Land Use Code:	220				
Land Use Description:	Apartments				
Independent Variable:	Number of Dwe	elling Units			
Variable:	67	-			
Source:	Institute of Tran	sportation H	Engineers, Trip (Generation, 9th	Edition 2012
	Directional Distribution	Rate	Standard Deviation	Adjustment Factor	Driveway Volume
7-9 AM Peak Hour Enter	20%	0.10	0.00	1.00	7
7-9 AM Peak Hour Exit	<u>80%</u>	0.41	0.00	1.00	<u>27</u>
7-9 AM Peak Hour Total	100%	0.51	0.73	1.00	34
AM Peak Hour Enter	29%	0.16	0.00	1.00	11
AM Peak Hour Exit	<u>71%</u>	<u>0.39</u>	0.00	1.00	<u>26</u>
AM Peak Hour Total	100%	0.55	0.76	1.00	37
PM Peak Hour Enter	61%	0.41	0.00	1.00	27
PM Peak Hour Exit	<u>39%</u>	0.26	0.00	1.00	<u>18</u>
PM Peak Hour Total	100%	0.67	0.85	1.00	45
4-6 PM Peak Hour Enter	65%	0.40	0.00	1.00	27
4-6 PM Peak Hour Exit	<u>35%</u>	0.22	0.00	1.00	<u>15</u>
4-6 PM Peak Hour Total	100%	0.62	0.82	1.00	42
Saturday Peak Hour Enter	50%	0.26	0.00	1.00	17
Saturday Peak Hour Exit	<u>50%</u>	0.26	0.00	1.00	<u>17</u>
Saturday Peak Hour Total	100%	0.52	0.74	1.00	35

Parking Capacity Area No. 1 Area No. 1 Area No. 2 Area No. 2 Area No. 3 Millbrook Court Area No. 3 Millbrook Court Circle Area No. 5 Garages Carages Area No. 5 Area No. 5 Area No. 5 Area No. 5 Area No. 5 Area No. 4 Area No. 5 Area No. 1 Area											
						Parl	Parking Observations taken on:	ns taken on:			
							Tuesday, May 12, 2015	12, 2015			
						NUMBER	DF OCCUPIED	NUMBER OF OCCUPIED PARKING SPACES	ES		
	10:00 PM	10:15 PM	10:30 PM	10:45 PM	11:00 PM	11:15 PM	11:30 PM				Average
	œ	80	80	6	10	13	13				10
	12	13	16	16	16	15	15				15
	16	16	16	16	16	16	16				16
	11	11	11	11	11	11	11				11
	×	×	×	×	×	×	×				×
	47	48	51	52	53	55	55				52
						NUMBER (JF AVAILABLE	NUMBER OF AVAILABLE PARKING SPACES	ES		
	10:00 PM	10:15 PM	10:30 PM	10:45 PM	11:00 PM	11:15 PM	11:30 PM				Average
a	12	12	12	11	10	7	7				10
Area No. 2 Southern Parking Lot 24	12	1	8	8	ø	6	б				თ
Area No. 3 Millbrook Court 16	0	0	0	0	0	0	0				0
Area No. 4 Millbrook Court Circle 12	1	۲	٦	1	٢	1	1				٢
Area No. 5 62 Garages	×	×	×	×	×	x	×			 	×
134	25	24	21	20	19	17	17				20

M15-012ss 10-28-2015

Parking Study

Area No. 6 Middle Neck west stile between N													
Area No. 6 de Neck west side between N							Par	king Observ	Parking Observations taken on:	Ë			
die Nack west siene between N								Tuesday, M	Tuesday, May 12, 2015				
Area No. 6 de Neck west side between N							NUMBER	OF OCCUPIE	NUMBER OF OCCUPIED PARKING SPACES	PACES			
Area No. 6 dle Neck west side between N	Parking Capacity	10:00 PM	10:15 PM	10:30 PM	10:45 PM	11:00 PM	11:15 PM	11:30 PM					Average
Driveway and Millbrook	œ	80	80	თ	6	თ	10	10					თ
Area No. 7 Middle Neck west side between Millbrook and S Driveway	e	ĸ	ĸ	m	e	e	r	ю					ю
Area No. 8 Middle Neck west side between S Driveway and Clover	e	4	4	e	e	ĸ	ю	ю					ю
Area No. 9 Middle Neck east side between Piccadilly and Wooley	ø	7	7	7	7	7	Q	Q					7
Area No. 10 Middle Neck east side between Wooley and S Driveway	10	1	1	10	10	10	10	10					10
Area No. 11 Middle Neck east side between S Driveway and Allenwood	24	52	22	22	22	22	23	23					22
	54	55	55	54	54	54	55	55					55
							NUMBER	OF AVAILAB	NUMBER OF AVAILABLE PARKING SPACES	SPACES			
	Parking Capacity	10:00 PM	10:15 PM	10:30 PM	10:45 PM	11:00 PM	11:15 PM	11:30 PM					Average
Area No. 6 Middle Neck west side between N Driveway and Millbrook	8	0	0	0	0	0	0	0					0
Area No. 7 Middle Neck west side between Millbrook and S Driveway	e	0	0	0	0	0	0	0					0
Area No. 8 Middle Neck west side between S Driveway and Clover	ç	0	0	0	0	0	0	0					0
Area No. 9 Middle Neck east side between Piccadilly and Wooley	9	0	0	0	0	0	0	0					0
Area No. 10 Middle Neck east side between Wooley and S Driveway	10	0	0	0	0	0	0	0					0
Area No. 11 Middle Neck east side between S Driveway and Allenwood	24	2	2	2	2	2	1	۲					2
	54	2	2	2	2	2	٢	1					2

SECTION NO. 04 INTERSECTION CAPACITY ANAYSIS

HIGHWAY CAPACITY ANALYSIS

DESCRIPTION

The level of service and capacity analysis prepared for this project is based on the methodologies presented in the Highway Capacity Manual (HCM 2000), published by the Transportation Research Board. The manual provides a consistent system of techniques for the evaluation of the quality of service on highway and street facilities. The following information is contained within Chapters 10, 16 and 17 of the Highway Capacity Manual.

SIGNALIZED INTERSECTIONS

CAPACITY

Capacity at intersections is defined for each lane group. The lane group capacity is the maximum hourly rate at which vehicles can reasonably be expected to pass through the intersection under prevailing traffic, roadway, and signalization conditions. The flow rate is generally measured or projected for a peak 15-minute period, and capacity is stated in vehicles per hour (vehicles per hour). Traffic conditions include volumes on each approach, the distribution of vehicles by movement (left, through, and right), the vehicle type distribution within each movement, the location and use of bus stops within the intersection area, pedestrian crossing flows, and parking movements on approaches to the intersection. Roadway conditions include the basic geometrics of the intersection, including the number and width of lanes, grades, and lane use allocations (including parking lanes). Signalization conditions include a full definition of the signal phasing, timing, and type of control, and an evaluation of signal progression for each lane group. The analysis of capacity at signalized intersections focuses on the computation of saturation flow rates, capacities, volume to capacity ratios, and level of service for lane groups.

LEVEL OF SERVICE

Level of service for signalized intersections is defined in terms of control delay, which is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions: in the absence of traffic control, geometric delay, any incidents, and any other vehicles. Specifically, LOS criteria for traffic signals are stated in terms of the average control delay per vehicle, typically for a 15-minute analysis period. Delay is a complex measure and depends on a number of variables, including the quality of progression, the cycle length, the green ratio, and the volume to capacity ratio for the lane group. The critical volume to capacity ratio is an approximate indicator of the overall sufficiency of an intersection. The critical volume to capacity ratio depends on the conflicting critical lane flow rates and the signal phasing.

The average back of queue is another performance measure that is used to analyze a signalized intersection. The back of queue is the number of vehicles that are queued depending on arrival patterns of vehicles and vehicles that do not clear the intersection during a given green phase.

Levels of service are defined to represent reasonable ranges in control delay.

<u>LOS A</u> describes operations with low control delay, up to 10 seconds per vehicle. This LOS occurs when progression is extremely favorable and most vehicles arrive during the green phase. Many vehicles do not stop at all. Short cycle lengths may tend to contribute to low delay values.

LOS B describes operations with control delay greater than 10 and up to 20 seconds per vehicle. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.

<u>LOS C</u> describes operations with control delay greater than 20 and up to 35 seconds per vehicle. These higher delays may result from only fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. Cycle failure occurs when a given green phase does not serve queued vehicles, and overflows occur. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.

LOS D describes operations with control delay greater than **35** and up to **55** seconds per vehicle. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, and high volume to capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

LOS E describes operations with control delay greater than **55** and up to **80** seconds per vehicle. These high delay values generally indicate poor progression, long cycle lengths, and high seconds per vehicle ratios. Individual cycle failures are frequent.

LOS \mathbf{F} describes operations with control delay in excess of **80** seconds per vehicle. This level, considered unacceptable to most drivers, often occurs with over-saturation, that is, when arrival flow rates exceed the capacity of lane groups. It may also occur at high volume to capacity ratios with many individual cycle failures. Poor progression and long cycle lengths may also contribute significantly to high delay levels.

Delays in the range of LOS F (unacceptable) can occur while the volume to capacity ratio is below 1.0. Very high delays can occur at such volume to capacity ratios when some combination of the following conditions exists: the cycle length is long, the lane group in question is disadvantaged by the signal timing (has a long red time), and the signal progression for the subject movements is poor. The reverse is also possible (for a limited duration): a saturated lane group (i.e., volume to capacity ratio greater than 1.0) may have low delays if the cycle length is short, or the signal progression is favorable, or both.

Thus, the designation LOS F does not automatically imply that the intersection, approach, or lane group is over capacity, nor does an LOS better than E automatically imply that unused capacity is available.

UNSIGNALIZED INTERSECTIONS

CAPACITY

At two-way stop controlled (unsignalized) intersections, drivers on the controlled approaches are required to select gaps in the major street flow through which to execute crossing or turning maneuvers on the basis of judgment. In the presence of a queue, each driver on the controlled approach must also use some time to move into the front-of-queue position and prepare to evaluate gaps in the major street flow. Thus, the capacity of the controlled legs is based on three factors: the distribution of gaps in the major street traffic stream, driver judgment in selecting gaps through which to execute the desired maneuvers, and the follow-up time required by each driver in a queue.

The basic capacity model assumes that gaps in the conflicting stream are randomly distributed. When traffic signals on the major street are within 0.25 miles of the subject intersection, flows may not be random but will likely have some platoon structure.

Pedestrians crossing an intersection impede lower-ranked minor street vehicles, but only one lane at a time. This is because vehicles performing a given through or turning movement tend to pass in front of or behind pedestrians once a driver's target lane is clear. The important factor is to determine the number of blockages. For the purpose of determining the pedestrian impedance, the pedestrian volume is the sum of individual pedestrians crossing individually and groups of pedestrians crossing together during the analysis time period.

The existence of a raised or striped median or a two-way left-turn lane (TWLTL) on the major street often causes some degree of a gap acceptance phenomenon known as "two-stage gap acceptance". For example, the existence of a raised or striped median causes a significant proportion of the minor street drivers to first cross part of the major street approach and then pause in the middle of the road to wait for another gap in the other approach. If a two-way left-turn lane exists on the major street, the minor street left-turn vehicle usually merges into the two-way left-turn lane first, then seeks a usable gap on the other approach while slowly moving some distance along the two-way left-turn lane. Both of these behaviors can increase capacity.

The geometric elements near the stop line on the stop-controlled approaches of many intersections may result in a higher capacity than the shared-lane capacity equation may predict. This is because, at such approaches, two vehicles may occupy or depart from the stop line simultaneously as a result of a large curb radius, a tapered curb, or a parking prohibition. The magnitude of this effect will depend in part on the turning movement volumes and the resultant probability of two vehicles being simultaneously at the stop line and on the storage length available to feed the second position at the stop line.

Often, two or three movements share a single lane on the minor approach. With this lane sharing, vehicles from different movements do not have simultaneous access to gaps, nor can more than one vehicle from the sharing movements use the same gap, which influences capacity.

The existence of nearby signalized intersections (i.e., traffic signals on the major street within 0.25 miles of the subject intersection) typically causes vehicles to arrive at the intersection in platoons. This influences the size and distribution of available gaps and may cause an increase in the minor street capacity. The greater the number of vehicles traveling in platoons, the higher the minor street capacity for a given opposing volume. This is due to the greater proportion of large gaps that more than one minor street vehicle can use. If signalized intersections exist upstream of the subject intersection in both directions, the effect is much more complex.

LEVEL OF SERVICE

Four measures are used to describe the performance of TWSC intersections: control delay, delay to major street through vehicles, queue length, and v/c ratio. The primary measure that is used to provide an estimate of LOS is control delay. This measure can be estimated for any movement on the minor (i.e., the stop-controlled) street. By summing delay estimates for individual movements, a delay estimate for each minor street movement and minor street approach can be achieved.

For AWSC intersections, the average control delay (in seconds per vehicle) is used as the primary measure of performance. Control delay is the increased time of travel for a vehicle approaching and passing through an AWSC intersection, compared with a free flow vehicle if it were not required to slow or stop at the intersection.

Capacity analysis at TWSC intersections depends on a clear description and understanding of the interaction of drivers on the minor or stop-controlled approach with drivers on the major street. Both gap acceptance and empirical models have been developed to describe this interaction. Procedures described in this chapter rely on a gap acceptance model developed and refined in Germany (I). The concepts from this model are described in Chapter 10. Exhibit 17-1 illustrates input to and the basic computation order of the method described in this chapter.

Level of service (LOS) for a TWSC intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS is not defined for the intersection as a whole. LOS criteria are given below:

Level of Service Criteria	Level of Service Criteria for Unsignalized Intersections							
Level of Service	Delay (in seconds per vehicle)							
А	≤ 10							
В	$> 10 \text{ and } \le 15$							
С	$> 15 \text{ and } \le 25$							
D	$> 25 \text{ and } \le 35$							
Е	$> 35 \text{ and } \le 50$							
F	> 50							

The LOS criteria for TWSC intersections are somewhat different from the criteria used for signalized intersections primarily because different transportation facilities create different driver perceptions. The expectation is that a signalized intersection is designed to carry higher traffic volumes and experience greater delay than an unsignalized intersection.

	≯	-	\mathbf{F}	4	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- सी	1		- 4 >		- ሽ	∱ ⊅			4î b	
Volume (veh/h)	77	37	200	90	52	18	130	636	28	11	721	93
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	(1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1976	1900	1824	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	77	37	200	90	52	18	130	636	28	11	721	93
Adj No. of Lanes	0	1	1	0	1	0	1	2	0	0	2	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	0	0	0	0	0 133	0 33	0	0	0	0	0	0
Cap, veh/h Arrive On Green	354 0.20	142 0.20	330 0.20	267 0.20	0.20	0.20	424 0.51	1809 0.51	80 0.51	101 0.51	1606 0.51	205 0.51
Sat Flow, veh/h	977	697	1615	602	654	159	654	3523	155	13	3128	399
· · · · · · · · · · · · · · · · · · ·	114	097	200	160	004	0	130	326	338	439	0	386
Grp Volume(v), veh/h Grp Sat Flow(s),veh/h/ln	1674	0	1615	1415	0	0	654	1805	1873	439	0	1659
Q Serve(g_s), s	0.0	0.0	4.4	2.0	0.0	0.0	6.1	4.2	4.2	0.0	0.0	5.8
Cycle Q Clear(g_c), s	2.0	0.0	4.4	4.0	0.0	0.0	11.9	4.2	4.2	5.7	0.0	5.8
Prop In Lane	0.68	0.0	1.00	0.56	0.0	0.0	1.00	4.2	0.08	0.03	0.0	0.24
Lane Grp Cap(c), veh/h	497	0	330	433	0	0.11	424	927	962	1061	0	852
V/C Ratio(X)	0.23	0.00	0.61	0.37	0.00	0.00	0.31	0.35	0.35	0.41	0.00	0.45
Avail Cap(c_a), veh/h	1111	0.00	995	1024	0.00	0.00	424	927	962	1061	0.00	852
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.1	0.0	14.1	13.8	0.0	0.0	9.8	5.6	5.6	6.0	0.0	6.0
Incr Delay (d2), s/veh	0.2	0.0	1.8	0.5	0.0	0.0	1.9	1.0	1.0	1.2	0.0	1.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.0	0.0	2.1	1.6	0.0	0.0	1.3	2.3	2.3	3.3	0.0	3.0
LnGrp Delay(d),s/veh	13.4	0.0	15.9	14.3	0.0	0.0	11.6	6.7	6.6	7.2	0.0	7.8
LnGrp LOS	В		В	В			В	А	А	А		A
Approach Vol, veh/h		314			160			794			825	
Approach Delay, s/veh		15.0			14.3			7.5			7.5	
Approach LOS		В			В			А			А	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		25.5		13.5		25.5		13.5				
Change Period (Y+Rc), s		5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s		20.0		24.0		20.0		24.0				
Max Q Clear Time (g_c+l1), s		13.9		6.4		7.8		6.0				
Green Ext Time (p_c), s		3.2		1.5		5.0		1.5				
Intersection Summary												
HCM 2010 Ctrl Delay			9.1									
HCM 2010 LOS			А									

	∢	•	1	1	1	Ļ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	¥		A1≱			4ħ			
Volume (vph)	49	96	737	40	95	999			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	16	12	11	12	12	11			
Total Lost time (s)	5.5		5.5			5.5			
Lane Util. Factor	1.00		0.95			0.95			
Frt	0.91		0.99			1.00			
Flt Protected	0.98		1.00			1.00			
Satd. Flow (prot)	1928		3463			3475			
Flt Permitted	0.98		1.00			0.81			
Satd. Flow (perm)	1928		3463			2841			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00			
Adj. Flow (vph)	49	96	737	40	95	999			
RTOR Reduction (vph)	83	0	4	0	0	0			
Lane Group Flow (vph)	62	0	773	0	0	1094			
Turn Type	Prot		NA		Perm	NA			
Protected Phases	8		2		1 Onn	6			
Permitted Phases	U		2		6	Ū			
Actuated Green, G (s)	6.8		33.0		Ū	33.0			
Effective Green, g (s)	6.8		33.0			33.0			
Actuated g/C Ratio	0.13		0.65			0.65			
Clearance Time (s)	5.5		5.5			5.5			
Vehicle Extension (s)	3.0		3.0			3.0			
_ane Grp Cap (vph)	258		2249			1845			
/s Ratio Prot	c0.03		0.22			1045			
//s Ratio Perm	0.05		0.22			c0.39			
//c Ratio	0.24		0.34			0.59			
Jniform Delay, d1	19.7		4.0			5.1			
Progression Factor	19.7		4.0			1.00			
ncremental Delay, d2	0.5		0.4			1.4			
Delay (s)	20.2		4.4			6.5			
Level of Service	20.2 C		4.4 A			0.5 A			
Approach Delay (s)	20.2		4.4			6.5			
Approach LOS	20.2 C		4.4 A			0.5 A			
	U		Л			Λ			
Intersection Summary					014 0000				
HCM 2000 Control Delay	.,		6.7	Н	CM 2000	Level of Service	e	А	
HCM 2000 Volume to Cap			0.53	-				44.0	
Actuated Cycle Length (s)			50.8		um of lost			11.0	
Intersection Capacity Utiliz	ation		74.4%	IC	U Level o	of Service		D	
Analysis Period (min)			15						
n i ritical Lana (Froun									

	∢	•	1	۲	1	Ļ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	Y		≜ †⊅			41			
Volume (vph)	106	33	671	54	27	870			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	12	12	11	12	12	11			
Total Lost time (s)	5.5		5.5			5.5			
Lane Util. Factor	1.00		0.95			0.95			
Frt	0.97		0.99			1.00			
Flt Protected	0.96		1.00			1.00			
Satd. Flow (prot)	1772		3451			3484			
Flt Permitted	0.96		1.00			0.92			
Satd. Flow (perm)	1772		3451			3221			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00			
Adj. Flow (vph)	106	33	671	54	27	870			
RTOR Reduction (vph)	28	0	7	0	0	0			
Lane Group Flow (vph)	111	0	, 718	0	0	897			
Turn Type	Prot		NA	0	Perm	NA			
Protected Phases	8		2		I CIIII	6			
Permitted Phases	0		2		6	0			
Actuated Green, G (s)	7.1		25.0		0	25.0			
Effective Green, g (s)	7.1		25.0			25.0			
Actuated g/C Ratio	0.16		0.58			0.58			
Clearance Time (s)	5.5		5.5			5.5			
Vehicle Extension (s)	3.0		3.0			3.0			
	291		2001			1868			
Lane Grp Cap (vph) v/s Ratio Prot	c0.06		0.21			1000			
v/s Ratio Perm	0.00		0.21			c0.28			
v/c Ratio	0.38		0.36			0.48			
	0.38 16.0		0.36 4.8			5.3			
Uniform Delay, d1 Progression Factor	1.00		4.0 1.00			5.5 1.00			
	0.8		0.5			0.9			
Incremental Delay, d2	0.8 16.9		0.5 5.3			0.9 6.2			
Delay (s) Level of Service	10.9 B		5.5 A			0.2 A			
	В 16.9		А 5.3			6.2			
Approach Delay (s)	16.9 B								
Approach LOS	В		А			A			
Intersection Summary									
HCM 2000 Control Delay			6.7	Н	CM 2000	Level of Servic	е	А	
HCM 2000 Volume to Cap			0.46						
Actuated Cycle Length (s)			43.1		um of lost			11.0	
Intersection Capacity Utiliz	zation		60.6%	IC	CU Level o	of Service		В	
Analysis Period (min)			15						
c Critical Lane Group									

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	1	22	0	767	970	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	1	22	0	767	970	4	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1356	487	974	0	-	0	
Stage 1	972	-	-	-	-	-	
Stage 2	384	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	143	532	716	-	-	-	
Stage 1	332	-	-	-	-	-	
Stage 2	664	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	143	532	716	-	-	-	
Mov Cap-2 Maneuver	143	-	-	-	-	-	
Stage 1	332	-	-	-	-	-	
Stage 2	664	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	12.9	0	0	
HCM LOS	В			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	716	- 476	-	-	
HCM Lane V/C Ratio	-	- 0.048	-	-	
HCM Control Delay (s)	0	- 12.9	-	-	
HCM Lane LOS	А	- B	-	-	
HCM 95th %tile Q(veh)	0	- 0.2	-	-	

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	6	14	9	669	944	5	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	6	14	9	669	944	5	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1300	475	949	0	-	0	
Stage 1	947	-	-	-	-	-	
Stage 2	353	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	155	541	732	-	-	-	
Stage 1	342	-	-	-	-	-	
Stage 2	688	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	152	541	732	-	-	-	
Mov Cap-2 Maneuver	152	-	-	-	-	-	
Stage 1	342	-	-	-	-	-	
Stage 2	674	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	17.6	0.2	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT EBLn'	SBT	SBR	
Capacity (veh/h)	732	- 306	; –	-	
HCM Lane V/C Ratio	0.012	- 0.065	-	-	
HCM Control Delay (s)	10	0.1 17.6	-	-	
HCM Lane LOS	А	A C	-	-	
HCM 95th %tile Q(veh)	0	- 0.2	-	-	

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	1	5	0	706	987	6	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	1	5	0	706	987	6	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1343	497	993	0	-	0	
Stage 1	990	-	-	-	-	-	
Stage 2	353	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	146	524	704	-	-	-	
Stage 1	325	-	-	-	-	-	
Stage 2	688	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	146	524	704	-	-	-	
Mov Cap-2 Maneuver	146	-	-	-	-	-	
Stage 1	325	-	-	-	-	-	
Stage 2	688	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	15	0	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	704	- 366	-	-	
HCM Lane V/C Ratio	-	- 0.016	-	-	
HCM Control Delay (s)	0	- 15	-	-	
HCM Lane LOS	А	- C	-	-	
HCM 95th %tile Q(veh)	0	- 0.1	-	-	

Intersection

Movement	NBL	NBT	SBT	SBR	NEL	NER	
Vol, veh/h	65	662	935	57	32	21	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	65	662	935	57	32	21	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	992	0	-	0	1425	496	
Stage 1	-	-	-	-	964	-	
Stage 2	-	-	-	-	461	-	
Critical Hdwy	4.1	-	-	-	6.8	6.9	
Critical Hdwy Stg 1	-	-	-	-	5.8	-	
Critical Hdwy Stg 2	-	-	-	-	5.8	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	705	-	-	-	129	525	
Stage 1	-	-	-	-	335	-	
Stage 2	-	-	-	-	607	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	705	-	-	-	110	525	
Mov Cap-2 Maneuver	-	-	-	-	110	-	
Stage 1	-	-	-	-	335	-	
Stage 2	-	-	-	-	518	-	

Approach	NB	SB	NE	
HCM Control Delay, s	1.5	0	38.3	
HCM LOS			E	

Minor Lane/Major Mvmt	NELn1	NBL	NBT	SBT	SBR	
Capacity (veh/h)	160	705	-	-	-	
HCM Lane V/C Ratio	0.331	0.092	-	-	-	
HCM Control Delay (s)	38.3	10.6	0.6	-	-	
HCM Lane LOS	E	В	А	-	-	
HCM 95th %tile Q(veh)	1.4	0.3	-	-	-	

	≯	-	\mathbf{F}	•	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1		- 4 >			∱ β			4î b	
Volume (veh/h)	73	25	115	46	33	15	105	605	49	8	520	58
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1976	1900	1824	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	73	25	115	46	33	15	105	605	49	8	520	58
Adj No. of Lanes	0	1	1	0	1	0	1	2	0	0	2	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	369	104	322	252	162	52	529	1748	141	101	1648	181
Arrive On Green	0.20	0.20	0.20	0.20	0.20	0.20	0.52	0.52	0.52	0.52	0.52	0.52
Sat Flow, veh/h	1038	523	1615	570	813	263	815	3383	274	11	3189	351
Grp Volume(v), veh/h	98	0	115	94	0	0	105	322	332	311	0	275
Grp Sat Flow(s),veh/h/ln	1561	0	1615	1646	0	0	815	1805	1852	1884	0	1667
Q Serve(g_s), s	0.2	0.0	2.4	0.0	0.0	0.0	3.3	4.1	4.1	0.0	0.0	3.7
Cycle Q Clear(g_c), s	1.8	0.0	2.4	1.6	0.0	0.0	7.0	4.1	4.1	3.7	0.0	3.7
Prop In Lane	0.74	0	1.00 322	0.49 466	0	0.16	1.00	022	0.15	0.03	0	0.21
Lane Grp Cap(c), veh/h	473	0 0.00			0 0.00	0 0.00	529	933	957	1069	0	861
V/C Ratio(X)	0.21 1097	0.00	0.36 1001	0.20 1120			0.20 529	0.35 933	0.35 957	0.29 1069	0.00 0	0.32 861
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	1.00	0 1.00	0 1.00	529 1.00	933	957 1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.1	0.00	13.4	13.1	0.00	0.00	7.4	5.5	5.5	5.4	0.00	5.4
Incr Delay (d2), s/veh	0.2	0.0	0.7	0.2	0.0	0.0	0.8	1.0	1.0	0.7	0.0	1.0
Initial Q Delay(d3),s/veh	0.2	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	0.0	1.1	0.9	0.0	0.0	0.0	2.2	2.3	2.1	0.0	1.9
LnGrp Delay(d),s/veh	13.3	0.0	14.0	13.3	0.0	0.0	8.3	6.5	6.5	6.1	0.0	6.4
LnGrp LOS	B	0.0	В	10.0 B	0.0	0.0	0.5 A	A	0.5 A	A	0.0	A.
Approach Vol, veh/h	D	213	0		94			759			586	/
Approach Delay, s/veh		13.7			13.3			6.8			6.2	
Approach LOS		В			B			A			0.2 A	
	1		3	1	5	C	7					
Timer Assigned Phs	l	2	3	4	Э	<u>6</u>	1	8				
Phs Duration (G+Y+Rc), s		25.5		13.2		25.5		13.2				
Change Period (Y+Rc), s		5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s		20.0		24.0		20.0		24.0				
Max Q Clear Time (g_c+l1), s		9.0		4.4		5.7		3.6				
Green Ext Time (p_c), s		3.7		0.9		4.1		0.9				
Intersection Summary												
HCM 2010 Ctrl Delay			7.8									
HCM 2010 LOS			7.0 A									
			А									

	∢	•	t	۲	1	Ļ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	¥		≜ †⊅			41			
Volume (vph)	36	60	722	32	46	632			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	16	12	11	12	12	11			
Total Lost time (s)	5.5		5.5			5.5			
Lane Util. Factor	1.00		0.95			0.95			
Frt	0.92		0.99			1.00			
Flt Protected	0.98		1.00			1.00			
Satd. Flow (prot)	1935		3467			3478			
Flt Permitted	0.98		1.00			0.87			
Satd. Flow (perm)	1935		3467			3051			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00			
Adj. Flow (vph)	36	60	722	32	46	632			
RTOR Reduction (vph)	54	0	3	0	40	0			
Lane Group Flow (vph)	42	0	751	0	0	678			
Turn Type	Prot	0	NA	0	Perm	NA			
Protected Phases	8		NA 2		Feilli	6			
Permitted Phases	0		2		6	U			
Actuated Green, G (s)	4.9		35.5		0	35.5			
	4.9		35.5			35.5			
Effective Green, g (s)									
Actuated g/C Ratio	0.10		0.69			0.69			
Clearance Time (s)	5.5		5.5			5.5			
Vehicle Extension (s)	3.0		3.0			3.0			
Lane Grp Cap (vph)	184		2394			2107			
v/s Ratio Prot	c0.02		0.22						
//s Ratio Perm						c0.22			
v/c Ratio	0.23		0.31			0.32			
Uniform Delay, d1	21.5		3.1			3.2			
Progression Factor	1.00		1.00			1.00			
Incremental Delay, d2	0.6		0.3			0.4			
Delay (s)	22.1		3.5			3.6			
Level of Service	С		А			A			
Approach Delay (s)	22.1		3.5			3.6			
Approach LOS	С		А			А			
Intersection Summary									
HCM 2000 Control Delay			4.7	Н	CM 2000	Level of Servic	е	А	
HCM 2000 Volume to Capa	acity ratio		0.31						
Actuated Cycle Length (s)			51.4	S	um of lost	t time (s)		11.0	
Intersection Capacity Utiliz	ation		60.2%	IC	CU Level o	of Service		В	
Analysis Period (min)			15						
c Critical Lane Group									

	4	•	1	۲	1	.↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	¥		∱1 ≱			41			
Volume (vph)	44	13	773	82	12	635			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	12	12	11	12	12	11			
Total Lost time (s)	5.5		5.5			5.5			
Lane Util. Factor	1.00		0.95			0.95			
Frt	0.97		0.99			1.00			
Flt Protected	0.96		1.00			1.00			
Satd. Flow (prot)	1773		3439			3486			
Flt Permitted	0.96		1.00			0.94			
Satd. Flow (perm)	1773		3439			3275			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00			
Adj. Flow (vph)	44	13	773	82	12	635			
RTOR Reduction (vph)	12	0	7	0	0	0			
Lane Group Flow (vph)	45	0	848	0	0	647			
Turn Type	Prot		NA		Perm	NA			
Protected Phases	8		2			6			
Permitted Phases					6				
Actuated Green, G (s)	3.3		30.9			30.9			
Effective Green, g (s)	3.3		30.9			30.9			
Actuated g/C Ratio	0.07		0.68			0.68			
Clearance Time (s)	5.5		5.5			5.5			
Vehicle Extension (s)	3.0		3.0			3.0			
Lane Grp Cap (vph)	129		2350			2238			
v/s Ratio Prot	c0.03		c0.25						
v/s Ratio Perm						0.20			
v/c Ratio	0.35		0.36			0.29			
Uniform Delay, d1	19.9		3.0			2.8			
Progression Factor	1.00		1.00			1.00			
Incremental Delay, d2	1.6		0.4			0.3			
Delay (s)	21.6		3.4			3.1			
Level of Service	C		A			A			
Approach Delay (s)	21.6		3.4			3.1			
Approach LOS	С		A			A			
Intersection Summary									
HCM 2000 Control Delay			4.0	Н	CM 2000	Level of Servic	9	A	
HCM 2000 Volume to Capa	acity ratio		0.36		2000		-		
Actuated Cycle Length (s)	and a state		45.2	S	um of lost	t time (s)		11.0	
Intersection Capacity Utiliza	ation		41.9%			of Service		A	
Analysis Period (min)			15					<i>,</i> ,	
c Critical Lane Group			10						

0

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	1	2	4	730	646	5	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	1	2	4	730	646	5	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1022	326	651	0	-	0	
Stage 1	649	-	-	-	-	-	
Stage 2	373	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	235	676	945	-	-	-	
Stage 1	487	-	-	-	-	-	
Stage 2	672	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	233	676	945	-	-	-	
Mov Cap-2 Maneuver	233	-	-	-	-	-	
Stage 1	487	-	-	-	-	-	
Stage 2	667	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	13.8	0	0	
HCM LOS	В			

Minor Lane/Major Mvmt	NBL	NBT E	BLn1	SBT	SBR	
Capacity (veh/h)	945	-	414	-	-	
HCM Lane V/C Ratio	0.004	-	0.007	-	-	
HCM Control Delay (s)	8.8	0	13.8	-	-	
HCM Lane LOS	А	А	В	-	-	
HCM 95th %tile Q(veh)	0	-	0	-	-	

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	2	3	4	714	641	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	2	3	4	714	641	4

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1008	323	645	0	-	0	
Stage 1	643	-	-	-	-	-	
Stage 2	365	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	240	679	950	-	-	-	
Stage 1	491	-	-	-	-	-	
Stage 2	679	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	238	679	950	-	-	-	
Mov Cap-2 Maneuver	238	-	-	-	-	-	
Stage 1	491	-	-	-	-	-	
Stage 2	674	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	14.4	0	0	
HCM LOS	В			

Minor Lane/Major Mvmt	NBL	NBT EE	3Ln1	SBT	SBR	
Capacity (veh/h)	950	-	390	-	-	
HCM Lane V/C Ratio	0.004	- 0	.013	-	-	
HCM Control Delay (s)	8.8	0	14.4	-	-	
HCM Lane LOS	А	А	В	-	-	
HCM 95th %tile Q(veh)	0	-	0	-	-	

0

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	0	0	2	715	671	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	0	2	715	671	0

Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	1033	336	671	0	-	
Stage 1	671	-	-	-	-	
Stage 2	362	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	232	666	929	-	-	-
Stage 1	475	-	-	-	-	-
Stage 2	681	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	231	666	929	-	-	-
Mov Cap-2 Maneuver	231	-	-	-	-	-
Stage 1	475	-	-	-	-	-
Stage 2	678	-	-	-	-	-

Approach	EB	NB	SB	
HCM Control Delay, s	0	0	0	
HCM LOS	А			

Minor Lane/Major Mvmt	NBL	NBT E	3Ln1	SBT	SBR
Capacity (veh/h)	929	-	-	-	-
HCM Lane V/C Ratio	0.002	-	-	-	-
HCM Control Delay (s)	8.9	0	0	-	-
HCM Lane LOS	А	А	Α	-	-
HCM 95th %tile Q(veh)	0	-	-	-	-

Intersection

Movement	NBL	NBT	SBT	SBR	NEL	NER	
Vol, veh/h	23	758	695	24	5	14	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
/eh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Nvmt Flow	23	758	695	24	5	14	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	719	0	-	0	1132	360	
Stage 1	-	-	-	-	707	-	
Stage 2	-	-	-	-	425	-	
Critical Hdwy	4.1	-	-	-	6.8	6.9	
Critical Hdwy Stg 1	-	-	-	-	5.8	-	
Critical Hdwy Stg 2	-	-	-	-	5.8	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	892	-	-	-	200	642	
Stage 1	-	-	-	-	455	-	
Stage 2	-	-	-	-	633	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	892	-	-	-	191	642	
Mov Cap-2 Maneuver	-	-	-	-	191	-	
Stage 1	-	-	-	-	455	-	
Stage 2	-	-	-	-	605	-	

Approach	NB	SB	NE	
HCM Control Delay, s	0.5	0	14.5	
HCM LOS			В	

Minor Lane/Major Mvmt	NELn1	NBL	NBT	SBT	SBR	
Capacity (veh/h)	396	892	-	-	-	
HCM Lane V/C Ratio	0.048	0.026	-	-	-	
HCM Control Delay (s)	14.5	9.1	0.2	-	-	
HCM Lane LOS	В	А	А	-	-	
HCM 95th %tile Q(veh)	0.2	0.1	-	-	-	

	≯	-	$\mathbf{\hat{z}}$	∢	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1		- 4 >		ሻ	∱1 ≱			र्स कि	
Volume (veh/h)	41	20	91	14	9	2	49	351	22	1	387	37
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.94		0.94	0.95		0.94	0.91		0.82	0.90		0.82
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1976	1900	1824	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	41	20	91	14	9	2	49	351	22	1	387	37
Adj No. of Lanes	0	1	1	0	1	0	1	2	0	0	2	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	471	208	559	397	238	45	423	1385	86	74	1300	122
Arrive On Green	0.37	0.37	0.37	0.37	0.37	0.37	0.41	0.41	0.41	0.41	0.41	0.41
Sat Flow, veh/h	944	563	1516	765	646	123	853	3401	211	1	3194	300
Grp Volume(v), veh/h	61	0	91	25	0	0	49	185	188	228	0	197
Grp Sat Flow(s),veh/h/ln	1507	0	1516	1534	0	0	853	1805	1807	1899	0	1596
Q Serve(g_s), s	0.1	0.0	2.0	0.0	0.0	0.0	2.0	3.3	3.4	0.0	0.0	4.1
Cycle Q Clear(g_c), s	1.0	0.0	2.0	0.4	0.0	0.0	6.1	3.3	3.4	4.0	0.0	4.1
Prop In Lane	0.67	0	1.00	0.56	0	0.08	1.00	705	0.12	0.00	0	0.19
Lane Grp Cap(c), veh/h	678	0	559	680	0	0	423	735	736	847	0	650
V/C Ratio(X)	0.09	0.00	0.16	0.04	0.00	0.00	0.12	0.25	0.26	0.27	0.00	0.30
Avail Cap(c_a), veh/h	856 1.00	0 1.00	741 1.00	859 1.00	0 1.00	0 1.00	423 1.00	735 1.00	736 1.00	847 1.00	0 1.00	650
HCM Platoon Ratio Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00 1.00
Uniform Delay (d), s/veh	10.1	0.00	10.4	9.9	0.00	0.00	11.9	9.6	9.6	9.8	0.00	9.8
Incr Delay (d2), s/veh	0.1	0.0	0.1	9.9 0.0	0.0	0.0	0.6	9.0 0.8	9.0 0.8	9.0 0.8	0.0	9.0 1.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	0.0	0.0	0.0	0.0	0.0	0.5	1.8	1.8	2.3	0.0	2.0
LnGrp Delay(d),s/veh	10.2	0.0	10.5	9.9	0.0	0.0	12.5	10.4	10.5	10.6	0.0	11.0
LnGrp LOS	B	0.0	B	 А	0.0	0.0	12.3 B	B	B	B	0.0	B
Approach Vol, veh/h	D	152		Λ	25		0	422			425	
Approach Delay, s/veh		10.4			9.9			10.7			10.8	
Approach LOS		В			э.э А			В			B	
			•			•	_				D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2 25.5		4 23.6		6 25.5		8 23.6				
Phs Duration (G+Y+Rc), s		25.5 5.5				25.5 5.5						
Change Period (Y+Rc), s Max Green Setting (Gmax), s		5.5 20.0		5.5 24.0		5.5 20.0		5.5 24.0				
Max Q Clear Time (g c+l1), s		8.1		4.0		6.1		24.0				
Green Ext Time (p_c), s		2.3		4.0		2.4		2.4 0.5				
. ,		2.5		0.5		2.4		0.0				
Intersection Summary			40.7									
HCM 2010 Ctrl Delay			10.7									
HCM 2010 LOS			В									

	4	•	1	1	1	Ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		≜ †⊅		-	44		
Volume (vph)	28	27	413	15	28	506		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	16	12	11	12	12	11		
Total Lost time (s)	5.5	12	5.5	12	12	5.5		
Lane Util. Factor	1.00		0.95			0.95		
Frpb, ped/bikes	0.93		1.00			1.00		
Flpb, ped/bikes	1.00		1.00			1.00		
Frt	0.93		0.99			1.00		
Flt Protected	0.93		1.00			1.00		
	1824					3467		
Satd. Flow (prot)			3457					
Flt Permitted	0.98		1.00			0.92		
Satd. Flow (perm)	1824		3457			3211		
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00		
Adj. Flow (vph)	28	27	413	15	28	506		
RTOR Reduction (vph)	25	0	2	0	0	0		
Lane Group Flow (vph)	30	0	426	0	0	534		
Confl. Peds. (#/hr)	150	200		150	200			
Turn Type	Prot		NA		Perm	NA		
Protected Phases	8		2			6		
Permitted Phases					6			
Actuated Green, G (s)	3.3		38.8			38.8		
Effective Green, g (s)	3.3		38.8			38.8		
Actuated g/C Ratio	0.06		0.73			0.73		
Clearance Time (s)	5.5		5.5			5.5		
Vehicle Extension (s)	3.0		3.0			3.0		
Lane Grp Cap (vph)	113		2526			2346		
v/s Ratio Prot	c0.02		0.12			2340		
v/s Ratio Perm	CU.UZ		0.12			c0.17		
	0.26		0.17			0.23		
v/c Ratio			0.17					
Uniform Delay, d1	23.7		2.2			2.3		
Progression Factor	1.00		1.00			1.00		
Incremental Delay, d2	1.2		0.1			0.2		
Delay (s)	25.0		2.3			2.5		
Level of Service	С		A			A		
Approach Delay (s)	25.0		2.3			2.5		
Approach LOS	С		А			A		
Intersection Summary								
HCM 2000 Control Delay			3.7	H	CM 2000	Level of Service	А	
HCM 2000 Volume to Capa	city ratio		0.23					
Actuated Cycle Length (s)	-		53.1	S	um of lost	time (s)	11.0	
Intersection Capacity Utiliza	ation		64.0%			of Service	В	
Analysis Period (min)			15					
c Critical Lane Group								

	•	•	1	1	1	Ļ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	¥		≜ †⊅			4 †			
Volume (vph)	35	9	428	59	6	544			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	12	12	11	12	12	11			
Total Lost time (s)	5.5		5.5			5.5			
Lane Util. Factor	1.00		0.95			0.95			
Frpb, ped/bikes	0.99		0.99			1.00			
Flpb, ped/bikes	1.00		1.00			1.00			
Frt	0.97		0.98			1.00			
Flt Protected	0.96		1.00			1.00			
Satd. Flow (prot)	1762		3397			3487			
Flt Permitted	0.96		1.00			0.95			
Satd. Flow (perm)	1762		3397			3317			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00			
Adj. Flow (vph)	35	9	428	59	6	544			
RTOR Reduction (vph)	9	0	420	0	0	0			
Lane Group Flow (vph)	35	0	479	0	0	550			
Confl. Peds. (#/hr)	25	50	475	75	75	550			
Turn Type	Prot	50	NA	15	Perm	NA			
Protected Phases	8		NA 2		Feim	6			
Permitted Phases	0		Z		6	0			
Actuated Green, G (s)	1.6		33.4		0	33.4			
Effective Green, g (s)	1.6		33.4			33.4			
Actuated g/C Ratio	0.03		0.73			0.73			
Clearance Time (s)	5.5		5.5			5.5			
Vehicle Extension (s)	5.5 3.0		5.5 3.0			3.0			
Lane Grp Cap (vph)	61		2466			2408			
v/s Ratio Prot	c0.02		0.14			0.47			
v/s Ratio Perm	0.50		0.40			c0.17			
v/c Ratio	0.58		0.19			0.23			
Uniform Delay, d1	21.9		2.0			2.1			
Progression Factor	1.00		1.00			1.00			
Incremental Delay, d2	12.6		0.2			0.2			
Delay (s)	34.5		2.2			2.3			
Level of Service	C		A			A			
Approach Delay (s)	34.5		2.2			2.3			
Approach LOS	С		A			A			
Intersection Summary									
HCM 2000 Control Delay			3.6	H	CM 2000	Level of Service		A	
HCM 2000 Volume to Capa	city ratio		0.24						
Actuated Cycle Length (s)			46.0	S	um of lost	time (s)	11.	0	
Intersection Capacity Utiliza	ation		45.9%			of Service		A	
Analysis Period (min)			15						
c Critical Lane Group									

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	1	6	0	448	506	2	
Conflicting Peds, #/hr	175	175	175	0	0	175	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	1	6	0	448	506	2	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	906	604	683	0	-	0	
Stage 1	682	-	-	-	-	-	
Stage 2	224	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	279	446	919	-	-	-	
Stage 1	469	-	-	-	-	-	
Stage 2	798	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	204	330	796	-	-	-	
Mov Cap-2 Maneuver	204	-	-	-	-	-	
Stage 1	401	-	-	-	-	-	
Stage 2	682	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	17.2	0	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	796	- 303	-	-
HCM Lane V/C Ratio	-	- 0.023	-	-
HCM Control Delay (s)	0	- 17.2	-	-
HCM Lane LOS	А	- C	-	-
HCM 95th %tile Q(veh)	0	- 0.1	-	-

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	5	7	0	427	484	7	
Conflicting Peds, #/hr	225	200	200	0	0	225	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
/eh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Nvmt Flow	5	7	0	427	484	7	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	927	671	716	0	-	0	
Stage 1	713	-	-	-	-	-	
Stage 2	214	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	271	404	894	-	-	-	
Stage 1	452	-	-	-	-	-	
Stage 2	807	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	179	278	757	-	-	-	
Mov Cap-2 Maneuver	179	-	-	-	-	-	
Stage 1	367	-	-	-	-	-	
Stage 2	656	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	21.8	0	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	757	- 226	-	-	
HCM Lane V/C Ratio	-	- 0.053	-	-	
HCM Control Delay (s)	0	- 21.8	-	-	
HCM Lane LOS	А	- C	-	-	
HCM 95th %tile Q(veh)	0	- 0.2	-	-	

0

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	1	1	1	432	496	1	
Conflicting Peds, #/hr	225	225	225	0	0	225	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
/eh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	1	1	1	432	496	1	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	940	699	722	0	-	0	
Stage 1	722	-	-	-	-	-	
Stage 2	218	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	266	387	889	-	-	-	
Stage 1	447	-	-	-	-	-	
Stage 2	803	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	175	260	736	-	-	-	
Mov Cap-2 Maneuver	175	-	-	-	-	-	
Stage 1	363	-	-	-	-	-	
Stage 2	651	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	22.4	0	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT E	BLn1	SBT	SBR	
Capacity (veh/h)	736	-	209	-	-	
HCM Lane V/C Ratio	0.001	-	0.01	-	-	
HCM Control Delay (s)	9.9	0	22.4	-	-	
HCM Lane LOS	A	А	С	-	-	
HCM 95th %tile Q(veh)	0	-	0	-	-	

Intersection

Movement	NBL	NBT	SBT	SBR	NEL	NER	
Vol, veh/h	8	448	500	8	11	37	
Conflicting Peds, #/hr	200	0	0	200	200	200	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	8	448	500	8	11	37	

Major1		Major2		Minor2		
708	0	-	0	944	654	
-	-	-	-	704	-	
-	-	-	-	240	-	
4.1	-	-	-	6.8	6.9	
-	-	-	-	5.8	-	
-	-	-	-	5.8	-	
2.2	-	-	-	3.5	3.3	
900	-	-	-	264	414	
-	-	-	-	457	-	
-	-	-	-	783	-	
	-	-	-			
763	-	-	-	181	292	
-	-	-	-	181	-	
-	-	-	-	381	-	
-	-	-	-	643	-	
	708 - - 4.1 - - 2.2 900 - - - 763 - -	708 0 4.1 - 2.2 - 900 - - 763 - - - - - - - - - - - - - -	708 0 - - - - 4.1 - - - - - 4.1 - - - - - 2.2 - - 900 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	708 0 - 0 - - - - 4.1 - - - - - - - 4.1 - - - - - - - 2.2 - - - 900 - - - - - - - - - - - 900 - - - - - - - - - - - 763 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Approach	NB	SB	NE	
HCM Control Delay, s	0.3	0	22.3	
HCM LOS			С	

Minor Lane/Major Mvmt	NELn1	NBL	NBT	SBT	SBR	
Capacity (veh/h)	256	763	-	-	-	
HCM Lane V/C Ratio	0.188	0.01	-	-	-	
HCM Control Delay (s)	22.3	9.8	0.1	-	-	
HCM Lane LOS	С	А	А	-	-	
HCM 95th %tile Q(veh)	0.7	0	-	-	-	

	≯	→	$\mathbf{\hat{z}}$	4	+	•	1	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		स	1		- ↔		ሻ	∱ }			ፋጉ	
Volume (veh/h)	81	39	211	95	54	19	139	671	29	11	759	97
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1976	1900	1824	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	81	39	211	95	54	19	139	671	29	11	759	97
Adj No. of Lanes	0	1	1	0	1	0	1	2	0	0	2	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	360	145	337	268	132	33	405	1800	78	100	1599	202
Arrive On Green	0.21	0.21	0.21	0.21	0.21	0.21	0.51	0.51	0.51	0.51	0.51	0.51
Sat Flow, veh/h	987	697	1615	594	631	156	629	3526	152	12	3132	397
Grp Volume(v), veh/h	120	0	211	168	0	0	139	343	357	461	0	406
Grp Sat Flow(s),veh/h/ln	1684	0	1615	1381	0	0	629	1805	1873	1882	0	1659
Q Serve(g_s), s	0.0	0.0	4.7	2.3	0.0	0.0	7.2	4.5	4.5	0.0	0.0	6.2
Cycle Q Clear(g_c), s	2.1	0.0	4.7	4.4	0.0	0.0	13.4	4.5	4.5	6.1	0.0	6.2
Prop In Lane	0.67 505	٥	1.00 337	0.57 432	٥	0.11	1.00	922	0.08 956	0.02 1055	0	0.24 847
Lane Grp Cap(c), veh/h	505 0.24	0 0.00	0.63	432 0.39	0 0.00	0 0.00	405 0.34	922 0.37	956 0.37	0.44	0 0.00	0.48
V/C Ratio(X) Avail Cap(c_a), veh/h	1107	0.00	989	1006	0.00	0.00	405	922	956	1055	0.00	0.40 847
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	922 1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.1	0.00	14.1	13.9	0.00	0.00	10.6	5.8	5.8	6.2	0.00	6.2
Incr Delay (d2), s/veh	0.2	0.0	1.9	0.6	0.0	0.0	2.3	1.2	1.1	1.3	0.0	1.9
Initial Q Delay(d3),s/veh	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.1	0.0	2.2	1.7	0.0	0.0	1.5	2.5	2.6	3.6	0.0	3.3
LnGrp Delay(d),s/veh	13.3	0.0	16.0	14.5	0.0	0.0	12.9	6.9	6.9	7.5	0.0	8.2
LnGrp LOS	B	0.0	В	В	0.0	0.0	B	0.0 A	0.0 A	A	0.0	A
Approach Vol, veh/h	<u></u>	331			168		0	839			867	/
Approach Delay, s/veh		15.0			14.5			7.9			7.8	
Approach LOS		B			В			7.5 A			7.0 A	
	4		2	4		<u>^</u>	7				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Timer Assigned Phs	1	2	3	4	5	<u>6</u>	7	8				
Phs Duration (G+Y+Rc), s		25.5		13.7		25.5		13.7				
Change Period (Y+Rc), s		5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s		20.0		24.0		20.0		24.0				
Max Q Clear Time (g_c+l1), s		15.4		6.7		8.2		6.4				
Green Ext Time (p_c), s		2.7		1.6		5.2		1.6				
		2.1		1.0		0.2		1.0				
Intersection Summary			0.4									
HCM 2010 Ctrl Delay			9.4									
HCM 2010 LOS			А									

	4	•	t	~	1	Ļ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	Y		¥î≽			41			
Volume (vph)	51	101	780	42	100	1052			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	16	12	11	12	12	11			
Total Lost time (s)	5.5		5.5			5.5			
Lane Util. Factor	1.00		0.95			0.95			
Frt	0.91		0.99			1.00			
Flt Protected	0.98		1.00			1.00			
Satd. Flow (prot)	1928		3463			3475			
Flt Permitted	0.98		1.00			0.80			
Satd. Flow (perm)	1928		3463			2803			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00			
Adj. Flow (vph)	51	101	780	42	100	1052			
RTOR Reduction (vph)	87	0	4	0	0	0			
Lane Group Flow (vph)	65	0	818	0	0	1152			
Turn Type	Prot	v	NA	v	Perm	NA			
Protected Phases	8		2		1 CIIII	6			
Permitted Phases	0		2		6	0			
Actuated Green, G (s)	6.8		33.0		U	33.0			
Effective Green, g (s)	6.8		33.0			33.0			
Actuated g/C Ratio	0.13		0.65			0.65			
Clearance Time (s)	5.5		5.5			5.5			
Vehicle Extension (s)	3.0		3.0			3.0			
· · · · · · · · · · · · · · · · · · ·	258		2249						
Lane Grp Cap (vph)						1820			
//s Ratio Prot	c0.03		0.24			-0.11			
/s Ratio Perm	0.05		0.26			c0.41			
v/c Ratio	0.25 19.7		0.36			0.63			
Uniform Delay, d1			4.1			5.3			
Progression Factor	1.00		1.00			1.00			
ncremental Delay, d2	0.5		0.5			1.7			
Delay (s)	20.2		4.5			7.0			
_evel of Service	C		A			A			
Approach Delay (s)	20.2		4.5			7.0			
Approach LOS	С		А			A			
Intersection Summary									
HCM 2000 Control Delay			7.0	Н	CM 2000	Level of Servic	e	А	
HCM 2000 Volume to Capa	acity ratio		0.57						
Actuated Cycle Length (s)			50.8		um of lost			11.0	
Intersection Capacity Utiliza	ation		77.7%	IC	CU Level of	of Service		D	
Analysis Period (min)			15						
c Critical Lane Group									

	۶	+	•	•	ł	*	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			4îb			ብጉ	
Volume (vph)	4	0	8	112	0	35	3	707	56	29	918	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	11	12
Total Lost time (s)		5.0			5.5			5.5			5.5	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frt		0.91			0.97			0.99			1.00	
Flt Protected		0.98			0.96			1.00			1.00	
Satd. Flow (prot)		1701			1771			3451			3484	
Flt Permitted		0.98			0.96			0.95			0.92	
Satd. Flow (perm)		1701			1771			3285			3202	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	4	0	8	112	0	35	3	707	56	29	918	1
RTOR Reduction (vph)	0	12	0	0	109	0	0	7	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	38	0	0	759	0	0	948	0
Turn Type	Split	NA		Split	NA		Perm	NA		Perm	NA	
Protected Phases	4	4		8	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)		0.5			6.7			25.2			25.2	
Effective Green, g (s)		0.5			6.7			25.2			25.2	
Actuated g/C Ratio		0.01			0.14			0.52			0.52	
Clearance Time (s)		5.0			5.5			5.5			5.5	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		17			245			1710			1667	
v/s Ratio Prot		c0.00			c0.02							
v/s Ratio Perm								0.23			c0.30	
v/c Ratio		0.01			0.16			0.44			0.57	
Uniform Delay, d1		23.7			18.4			7.2			7.9	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.2			0.3			0.8			1.4	
Delay (s)		23.9			18.7			8.1			9.3	
Level of Service		С			В			А			А	
Approach Delay (s)		23.9			18.7			8.1			9.3	
Approach LOS		С			В			А			А	
Intersection Summary												
HCM 2000 Control Delay			9.6	Н	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capacit	y ratio		0.47									
Actuated Cycle Length (s)			48.4	S	um of lost	t time (s)			16.0			
Intersection Capacity Utilization	n		70.6%	IC	U Level	of Service	;		С			
Analysis Period (min)			15									
a Oritical Lana Oraur												

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	1	23	0	812	1021	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	1	23	0	812	1021	4	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1429	513	1025	0	-	0	
Stage 1	1023	-	-	-	-	-	
Stage 2	406	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	128	512	685	-	-	-	
Stage 1	312	-	-	-	-	-	
Stage 2	647	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	128	512	685	-	-	-	
Mov Cap-2 Maneuver	128	-	-	-	-	-	
Stage 1	312	-	-	-	-	-	
Stage 2	647	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	13.4	0	0	
HCM LOS	В			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	685	- 455	-	-	
HCM Lane V/C Ratio	-	- 0.053	-	-	
HCM Control Delay (s)	0	- 13.4	-	-	
HCM Lane LOS	А	- B	-	-	
HCM 95th %tile Q(veh)	0	- 0.2	-	-	

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	6	15	10	709	995	5	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	6	15	10	709	995	5	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1373	500	1000	0	-	0	
Stage 1	998	-	-	-	-	-	
Stage 2	375	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	139	522	700	-	-	-	
Stage 1	322	-	-	-	-	-	
Stage 2	671	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	136	522	700	-	-	-	
Mov Cap-2 Maneuver	136	-	-	-	-	-	
Stage 1	322	-	-	-	-	-	
Stage 2	655	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	18.5	0.2	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	700	- 288	-	-	
HCM Lane V/C Ratio	0.014	- 0.073	-	-	
HCM Control Delay (s)	10.2	0.1 18.5	-	-	
HCM Lane LOS	В	A C	-	-	
HCM 95th %tile Q(veh)	0	- 0.2	-	-	

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	1	5	0	747	1039	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	1	5	0	747	1039	6

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1416	523	1045	0	-	0	
Stage 1	1042	-	-	-	-	-	
Stage 2	374	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	131	504	673	-	-	-	
Stage 1	305	-	-	-	-	-	
Stage 2	672	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	131	504	673	-	-	-	
Mov Cap-2 Maneuver	131	-	-	-	-	-	
Stage 1	305	-	-	-	-	-	
Stage 2	672	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	15.7	0	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	673	- 342	-	-	
HCM Lane V/C Ratio	-	- 0.018	-	-	
HCM Control Delay (s)	0	- 15.7	-	-	
HCM Lane LOS	А	- C	-	-	
HCM 95th %tile Q(veh)	0	- 0.1	-	-	

Intersection

Movement	NBL	NBT	SBT	SBR	NEL	NER	
Vol, veh/h	61	699	982	62	31	21	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
eh in Median Storage, #	-	0	0	-	0	-	
irade, %	-	0	0	-	0	-	
eak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
/vmt Flow	61	699	982	62	31	21	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	1044	0	-	0	1485	522	
Stage 1	-	-	-	-	1013	-	
Stage 2	-	-	-	-	472	-	
Critical Hdwy	4.1	-	-	-	6.8	6.9	
Critical Hdwy Stg 1	-	-	-	-	5.8	-	
Critical Hdwy Stg 2	-	-	-	-	5.8	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	674	-	-	-	118	505	
Stage 1	-	-	-	-	316	-	
Stage 2	-	-	-	-	600	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	674	-	-	-	101	505	
Mov Cap-2 Maneuver	-	-	-	-	101	-	
Stage 1	-	-	-	-	316	-	
Stage 2	-	-	-	-	511	-	

Approach	NB	SB	NE	
HCM Control Delay, s	1.5	0	41.6	
HCM LOS			E	

Minor Lane/Major Mvmt	NELn1	NBL	NBT	SBT	SBR	
Capacity (veh/h)	149	674	-	-	-	
HCM Lane V/C Ratio	0.349	0.091	-	-	-	
HCM Control Delay (s)	41.6	10.9	0.7	-	-	
HCM Lane LOS	E	В	А	-	-	
HCM 95th %tile Q(veh)	1.4	0.3	-	-	-	

	≯	-	$\mathbf{\hat{z}}$	∢	-	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- सी	1		- 4 >			≜ ⊅			€ि	
Volume (veh/h)	76	26	125	48	35	15	111	639	51	9	551	61
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	(1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1976	1900	1824	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	76	26	125	48	35	15	111	639	51	9	551	61
Adj No. of Lanes	0	1	1	0	1	0	1	2	0	0	2	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	370	105	323	252	164	50	512	1748	139	102	1645	180
Arrive On Green	0.20	0.20	0.20	0.20	0.20	0.20	0.52	0.52	0.52	0.52	0.52	0.52
Sat Flow, veh/h	1039	522	1615	569	820	251	790	3387	270	13	3188	348
Grp Volume(v), veh/h	102	0	125	98	0	0	111	340	350	329	0	292
Grp Sat Flow(s),veh/h/ln	1562	0	1615	1640	0	0	790	1805	1852	1881	0	1668
Q Serve(g_s), s	0.2	0.0	2.6	0.0	0.0	0.0	3.7	4.4	4.4	0.0	0.0	4.0
Cycle Q Clear(g_c), s	1.8	0.0	2.6	1.7	0.0	0.0	7.7	4.4	4.4	3.9	0.0	4.0
Prop In Lane	0.75	0	1.00 323	0.49 467	0	0.15	1.00	024	0.15 956	0.03 1066	0	0.21
Lane Grp Cap(c), veh/h	475 0.21	0 0.00	323 0.39	407 0.21	0 0.00	0 0.00	512 0.22	931 0.37	956 0.37	0.31	0 0.00	860 0.34
V/C Ratio(X)	1095	0.00	1000	1114	0.00	0.00	0.22 512	931	956	1066	0.00	0.34 860
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.1	0.00	13.4	13.1	0.00	0.00	7.8	5.6	5.6	5.5	0.00	5.5
Incr Delay (d2), s/veh	0.2	0.0	0.8	0.2	0.0	0.0	1.0	1.1	1.1	0.8	0.0	1.1
Initial Q Delay(d3),s/veh	0.2	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.9	0.0	1.2	0.9	0.0	0.0	0.9	2.4	2.4	2.2	0.0	2.0
LnGrp Delay(d),s/veh	13.3	0.0	14.2	13.3	0.0	0.0	8.7	6.7	6.7	6.2	0.0	6.6
LnGrp LOS	B	0.0	B	В	0.0	0.0	A	A	A	A	0.0	A
Approach Vol, veh/h		227	0	<u> </u>	98		7.	801			621	
Approach Delay, s/veh		13.8			13.3			7.0			6.4	
Approach LOS		B			B			A			A	
	1	2	3	Λ	5	6	7	8			,,	
Timer Assigned Phs		2	3	4	5	6	1	8				
Phs Duration (G+Y+Rc), s		25.5		13.3		25.5		13.3				
Change Period (Y+Rc), s		5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s		20.0		24.0		20.0		24.0				
Max Q Clear Time (g_c+l1), s		9.7		4.6		6.0		3.7				
Green Ext Time (p_c), s		3.8		0.9		4.4		0.9				
Intersection Summary												
HCM 2010 Ctrl Delay			8.0									
HCM 2010 LOS			А									

	∢	•	1	1	1	Ļ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	۲		∱1 ≱			41			
Volume (vph)	38	63	763	33	49	671			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	16	12	11	12	12	11			
Total Lost time (s)	5.5		5.5			5.5			
Lane Util. Factor	1.00		0.95			0.95			
Frt	0.92		0.99			1.00			
Flt Protected	0.98		1.00			1.00			
Satd. Flow (prot)	1936		3468			3478			
Flt Permitted	0.98		1.00			0.87			
Satd. Flow (perm)	1936		3468			3022			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00			
Adj. Flow (vph)	38	63	763	33	49	671			
RTOR Reduction (vph)	55	0	3	0	0	0			
Lane Group Flow (vph)	46	0	793	0	0	720			
Turn Type	Prot		NA		Perm	NA			
Protected Phases	8		2			6			
Permitted Phases	Ű		-		6	Ū			
Actuated Green, G (s)	6.6		33.8		v	33.8			
Effective Green, g (s)	6.6		33.8			33.8			
Actuated g/C Ratio	0.13		0.66			0.66			
Clearance Time (s)	5.5		5.5			5.5			
Vehicle Extension (s)	3.0		3.0			3.0			
Lane Grp Cap (vph)	248		2280			1987			
v/s Ratio Prot	c0.02		0.23			1507			
v/s Ratio Perm	00.02		0.20			c0.24			
v/c Ratio	0.19		0.35			0.36			
Uniform Delay, d1	20.0		3.9			4.0			
Progression Factor	1.00		1.00			1.00			
Incremental Delay, d2	0.4		0.4			0.5			
Delay (s)	20.4		4.3			4.5			
Level of Service	20.4 C		4.5 A			4.5 A			
Approach Delay (s)	20.4		4.3			4.5			
Approach LOS	20.4 C		4.3 A			4.5 A			
Intersection Summary									
HCM 2000 Control Delay			5.4		CM 2000	Level of Servic	<u>```</u>	A	
HCM 2000 Volume to Capa	city ratio		0.33	П				Λ	
Actuated Cycle Length (s)	ioity ratio		0.33 51.4	0	um of lost	time (s)		11.0	
Intersection Capacity Utiliza	ation		51.4 62.5%			of Service			
Analysis Period (min)			62.5% 15	IC				В	
C Critical Lane Group			15						

	۶	-	\mathbf{F}	∢	-	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			4îb			4î b	
Volume (vph)	4	0	8	47	0	15	3	819	86	12	670	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	11	12
Total Lost time (s)		5.0			5.5			5.5			5.5	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frt		0.91			0.97			0.99			1.00	
Flt Protected		0.98			0.96			1.00			1.00	
Satd. Flow (prot)		1701			1771			3440			3486	
Flt Permitted		0.98			0.96			0.95			0.94	
Satd. Flow (perm)		1701			1771			3280			3270	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	4	0	8	47	0	15	3	819	86	12	670	1
RTOR Reduction (vph)	0	12	0	0	58	0	0	7	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	4	0	0	901	0	0	683	0
Turn Type	Split	NA		Split	NA		Perm	NA		Perm	NA	
Protected Phases	4	4		8	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)		0.5			3.1			30.6			30.6	
Effective Green, g (s)		0.5			3.1			30.6			30.6	
Actuated g/C Ratio		0.01			0.06			0.61			0.61	
Clearance Time (s)		5.0			5.5			5.5			5.5	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		16			109			1999			1993	
v/s Ratio Prot		c0.00			c0.00							
v/s Ratio Perm								c0.27			0.21	
v/c Ratio		0.01			0.04			0.45			0.34	
Uniform Delay, d1		24.6			22.1			5.3			4.8	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.2			0.1			0.7			0.5	
Delay (s)		24.8			22.3			6.0			5.3	
Level of Service		С			С			А			А	
Approach Delay (s)		24.8			22.3			6.0			5.3	
Approach LOS		С			С			А			А	
Intersection Summary												
HCM 2000 Control Delay			6.5	Н	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capac	city ratio		0.41									
Actuated Cycle Length (s)			50.2		um of lost				16.0			
Intersection Capacity Utilization	tion		43.9%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									
a Critical Lana Croup												

0

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	1	2	4	770	686	5	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	1	2	4	770	686	5	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1082	346	691	0	-	0	
Stage 1	689	-	-	-	-	-	
Stage 2	393	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	215	656	913	-	-	-	
Stage 1	465	-	-	-	-	-	
Stage 2	657	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	213	656	913	-	-	-	
Mov Cap-2 Maneuver	213	-	-	-	-	-	
Stage 1	465	-	-	-	-	-	
Stage 2	652	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	14.4	0	0	
HCM LOS	В			

Minor Lane/Major Mvmt	NBL	NBT E	BLn1	SBT	SBR	
Capacity (veh/h)	913	-	387	-	-	
HCM Lane V/C Ratio	0.004	- (800.0	-	-	
HCM Control Delay (s)	9	0	14.4	-	-	
HCM Lane LOS	А	А	В	-	-	
HCM 95th %tile Q(veh)	0	-	0	-	-	

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	2	3	4	753	681	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
eh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Nvmt Flow	2	3	4	753	681	4	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1068	343	685	0	-	0	
Stage 1	683	-	-	-	-	-	
Stage 2	385	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	220	659	918	-	-	-	
Stage 1	468	-	-	-	-	-	
Stage 2	663	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	218	659	918	-	-	-	
Mov Cap-2 Maneuver	218	-	-	-	-	-	
Stage 1	468	-	-	-	-	-	
Stage 2	658	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	15	0	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT E	EBLn1	SBT	SBR
Capacity (veh/h)	918	-	364	-	-
HCM Lane V/C Ratio	0.004	-	0.014	-	-
HCM Control Delay (s)	8.9	0	15	-	-
HCM Lane LOS	А	А	С	-	-
HCM 95th %tile Q(veh)	0	-	0	-	-

0

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	0	0	2	754	713	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	0	0	2	754	713	0	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1094	357	713	0	-	0	
Stage 1	713	-	-	-	-	-	
Stage 2	381	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	212	645	896	-	-	-	
Stage 1	452	-	-	-	-	-	
Stage 2	666	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	211	645	896	-	-	-	
Mov Cap-2 Maneuver	211	-	-	-	-	-	
Stage 1	452	-	-	-	-	-	
Stage 2	663	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	0	0	0	
HCM LOS	А			

Minor Lane/Major Mvmt	NBL	NBT EI	3Ln1	SBT	SBR
Capacity (veh/h)	896	-	-	-	-
HCM Lane V/C Ratio	0.002	-	-	-	-
HCM Control Delay (s)	9	0	0	-	-
HCM Lane LOS	А	А	А	-	-
HCM 95th %tile Q(veh)	0	-	-	-	-

0.4

Intersection

Movement	NBL	NBT	SBT	SBR	NEL	NER	
Vol, veh/h	22	798	734	21	3	15	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	22	798	734	21	3	15	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	755	0	-	0	1188	378	
Stage 1	-	-	-	-	745	-	
Stage 2	-	-	-	-	443	-	
Critical Hdwy	4.1	-	-	-	6.8	6.9	
Critical Hdwy Stg 1	-	-	-	-	5.8	-	
Critical Hdwy Stg 2	-	-	-	-	5.8	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	865	-	-	-	184	625	
Stage 1	-	-	-	-	435	-	
Stage 2	-	-	-	-	620	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	865	-	-	-	176	625	
Mov Cap-2 Maneuver	-	-	-	-	176	-	
Stage 1	-	-	-	-	435	-	
Stage 2	-	-	-	-	591	-	

Approach	NB	SB	NE	
HCM Control Delay, s	0.4	0	13.6	
HCM LOS			В	

Minor Lane/Major Mvmt	NELn1	NBL	NBT	SBT	SBR	
Capacity (veh/h)	439	865	-	-	-	
HCM Lane V/C Ratio	0.041	0.025	-	-	-	
HCM Control Delay (s)	13.6	9.3	0.2	-	-	
HCM Lane LOS	В	А	А	-	-	
HCM 95th %tile Q(veh)	0.1	0.1	-	-	-	

	≯	-	\mathbf{F}	4	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		स ्	1		- 4 >		ሻ	∱ ⊅			4 Þ	
Volume (veh/h)	43	21	98	15	10	2	52	371	23	1	409	39
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.94		0.94	0.95		0.94	0.91		0.82	0.90		0.82
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1976	1900	1824	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	43	21	98	15	10	2	52	371	23	1	409	39
Adj No. of Lanes	0	1	1	0	1	0	1	2	0	0	2	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	471	208	560	394	245	42	413	1385	85	74	1299	122
Arrive On Green	0.37	0.37	0.37	0.37	0.37	0.37	0.41	0.41	0.41	0.41	0.41	0.41
Sat Flow, veh/h	943	563	1517	757	663	114	838	3403	209	1	3194	300
Grp Volume(v), veh/h	64	0	98	27	0	0	52	195	199	241	0	208
Grp Sat Flow(s),veh/h/ln	1506	0	1517	1533	0	0	838	1805	1808	1899	0	1596
Q Serve(g_s), s	0.1	0.0	2.1	0.0	0.0	0.0	2.2	3.5	3.6	0.0	0.0	4.4
Cycle Q Clear(g_c), s	1.1	0.0	2.1	0.4	0.0	0.0	6.6	3.5	3.6	4.2	0.0	4.4
Prop In Lane	0.67	0	1.00	0.56	0	0.07	1.00	70.4	0.12	0.00	0	0.19
Lane Grp Cap(c), veh/h	679	0	560	680	0	0	413	734	735	846	0	649
V/C Ratio(X)	0.09	0.00	0.17	0.04	0.00	0.00	0.13	0.27	0.27	0.29	0.00	0.32
Avail Cap(c_a), veh/h	855	0	740	858	0	0	413	734	735	846	0	649
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	10.1	0.0	10.4	9.9	0.0	0.0	12.2	9.7	9.7	9.9	0.0	9.9
Incr Delay (d2), s/veh	0.1	0.0	0.1	0.0	0.0	0.0	0.6	0.9	0.9	0.8	0.0	1.3
Initial Q Delay(d3),s/veh	0.0 0.6	0.0	0.0 0.9	0.0 0.2	0.0	0.0	0.0	0.0 1.9	0.0	0.0 2.4	0.0	0.0 2.1
%ile BackOfQ(50%),veh/ln		0.0			0.0	0.0	0.6		2.0		0.0	
LnGrp Delay(d),s/veh	10.2 B	0.0	10.6 B	9.9 A	0.0	0.0	12.8 B	10.6 В	10.6 B	10.8 B	0.0	11.2 В
LnGrp LOS	D	160	D	A	07		D	446	D	D	440	D
Approach Vol, veh/h		162			27						449	_
Approach Delay, s/veh		10.4			9.9			10.9			11.0	
Approach LOS		В			A			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		25.5		23.7		25.5		23.7				
Change Period (Y+Rc), s		5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s		20.0		24.0		20.0		24.0				
Max Q Clear Time (g_c+I1), s		8.6		4.1		6.4		2.4				
Green Ext Time (p_c), s		2.4		0.5		2.5		0.6				
Intersection Summary												
HCM 2010 Ctrl Delay			10.8									
HCM 2010 LOS			В									

	4	•	Ť	1	5	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		∱1 ≱			4ħ	
Volume (vph)	29	28	437	16	29	536	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width	16	12	11	12	12	11	
Total Lost time (s)	5.5		5.5			5.5	
Lane Util. Factor	1.00		0.95			0.95	
Frpb, ped/bikes	0.93		1.00			1.00	
Flpb, ped/bikes	1.00		1.00			1.00	
Frt	0.93		0.99			1.00	
Flt Protected	0.98		1.00			1.00	
Satd. Flow (prot)	1825		3456			3468	
Flt Permitted	0.98		1.00			0.92	
Satd. Flow (perm)	1825		3456			3207	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	
Adj. Flow (vph)	29	28	437	16	29	536	
RTOR Reduction (vph)	26	0	2	0	0	0	
Lane Group Flow (vph)	31	0	451	0	0	565	
Confl. Peds. (#/hr)	150	200		150	200		
Turn Type	Prot		NA		Perm	NA	
Protected Phases	8		2			6	
Permitted Phases					6		
Actuated Green, G (s)	3.3		38.5			38.5	
Effective Green, g (s)	3.3		38.5			38.5	
Actuated g/C Ratio	0.06		0.73			0.73	
Clearance Time (s)	5.5		5.5			5.5	
Vehicle Extension (s)	3.0		3.0			3.0	
Lane Grp Cap (vph)	114		2520			2338	
v/s Ratio Prot	c0.02		0.13				
v/s Ratio Perm						c0.18	
v/c Ratio	0.27		0.18			0.24	
Uniform Delay, d1	23.6		2.2			2.4	
Progression Factor	1.00		1.00			1.00	
Incremental Delay, d2	1.3		0.2			0.2	
Delay (s)	24.9		2.4			2.6	
Level of Service	С		А			А	
Approach Delay (s)	24.9		2.4			2.6	
Approach LOS	С		А			А	
Intersection Summary							
HCM 2000 Control Delay			3.7	Н	CM 2000	Level of Service	Α
HCM 2000 Volume to Cap	acity ratio		0.24				
Actuated Cycle Length (s)			52.8	S	um of lost	t time (s)	11.0
Intersection Capacity Utiliz			65.5%			of Service	С
Analysis Period (min)			15				
c Critical Lane Group							

	≯	-	$\mathbf{\hat{z}}$	∢	←	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			4î b			4î îr	
Volume (vph)	3	0	5	36	0	9	8	454	62	6	574	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	11	12
Total Lost time (s)		5.0			5.5			5.5			5.5	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.80			0.99			0.99			1.00	
Flpb, ped/bikes		0.99			1.00			1.00			1.00	
Frt		0.92			0.97			0.98			1.00	
Flt Protected		0.98			0.96			1.00			1.00	
Satd. Flow (prot)		1350			1762			3391			3485	
Flt Permitted		0.98			0.96			0.95			0.95	
Satd. Flow (perm)		1350			1762			3214			3314	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	3	0	5	36	0	9	8	454	62	6	574	1
RTOR Reduction (vph)	0	8	0	0	44	0	0	9	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	1	0	0	515	0	0	581	0
Confl. Peds. (#/hr)	50		25	25		50	175		75	75		175
Turn Type	Split	NA		Split	NA		Perm	NA		Perm	NA	
Protected Phases	4	4		8	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)		0.5			1.4			32.6			32.6	
Effective Green, g (s)		0.5			1.4			32.6			32.6	
Actuated g/C Ratio		0.01			0.03			0.65			0.65	
Clearance Time (s)		5.0			5.5			5.5			5.5	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		13			48			2074			2139	
v/s Ratio Prot		c0.00			c0.00							
v/s Ratio Perm								0.16			c0.18	
v/c Ratio		0.01			0.03			0.25			0.27	
Uniform Delay, d1		24.8			23.9			3.8			3.8	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.2			0.2			0.3			0.3	
Delay (s)		24.9			24.1			4.1			4.2	
Level of Service		С			С			А			А	
Approach Delay (s)		24.9			24.1			4.1			4.2	
Approach LOS		С			С			А			А	
Intersection Summary												
HCM 2000 Control Delay			5.0	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity	y ratio		0.26									
Actuated Cycle Length (s)			50.5		um of los				16.0			
Intersection Capacity Utilizatio	n		47.5%	IC	CU Level	of Service	1		А			
Analysis Period (min)			15									
c Critical Lane Group												

0.1

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	1	7	0	475	536	2	
Conflicting Peds, #/hr	175	175	175	0	0	175	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	1	7	0	475	536	2	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	950	619	713	0	-	0	
Stage 1	712	-	-	-	-	-	
Stage 2	238	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	262	436	896	-	-	-	
Stage 1	453	-	-	-	-	-	
Stage 2	785	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	191	323	776	-	-	-	
Mov Cap-2 Maneuver	191	-	-	-	-	-	
Stage 1	387	-	-	-	-	-	
Stage 2	671	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	17.5	0	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	776	- 297	-	-
HCM Lane V/C Ratio	-	- 0.027	-	-
HCM Control Delay (s)	0	- 17.5	-	-
HCM Lane LOS	А	- C	-	-
HCM 95th %tile Q(veh)	0	- 0.1	-	-

0.3

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	6	8	0	453	513	8	
Conflicting Peds, #/hr	225	200	200	0	0	225	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	6	8	0	453	513	8	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	969	686	746	0	-	0	
Stage 1	742	-	-	-	-	-	
Stage 2	227	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	255	395	871	-	-	-	
Stage 1	437	-	-	-	-	-	
Stage 2	795	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	168	272	738	-	-	-	
Mov Cap-2 Maneuver	168	-	-	-	-	-	
Stage 1	355	-	-	-	-	-	
Stage 2	646	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	22.9	0	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	738	- 215	-	-
HCM Lane V/C Ratio	-	- 0.065	-	-
HCM Control Delay (s)	0	- 22.9	-	-
HCM Lane LOS	А	- C	-	-
HCM 95th %tile Q(veh)	0	- 0.2	-	-

0

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Vol, veh/h	1	1	1	457	526	1	
Conflicting Peds, #/hr	225	225	225	0	0	225	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	1	1	1	457	526	1	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	983	714	752	0	-	0	
Stage 1	752	-	-	-	-	-	
Stage 2	231	-	-	-	-	-	
Critical Hdwy	6.8	6.9	4.1	-	-	-	
Critical Hdwy Stg 1	5.8	-	-	-	-	-	
Critical Hdwy Stg 2	5.8	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	-	
Pot Cap-1 Maneuver	249	378	867	-	-	-	
Stage 1	432	-	-	-	-	-	
Stage 2	792	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	164	254	718	-	-	-	
Mov Cap-2 Maneuver	164	-	-	-	-	-	
Stage 1	351	-	-	-	-	-	
Stage 2	642	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	23.3	0	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT E	BLn1	SBT	SBR
Capacity (veh/h)	718	-	199	-	-
HCM Lane V/C Ratio	0.001	-	0.01	-	-
HCM Control Delay (s)	10	0	23.3	-	-
HCM Lane LOS	В	А	С	-	-
HCM 95th %tile Q(veh)	0	-	0	-	-

1

Intersection

Movement	NBL	NBT	SBT	SBR	NEL	NER	
Vol, veh/h	8	473	528	6	9	32	
Conflicting Peds, #/hr	200	0	0	200	200	200	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	8	473	528	6	9	32	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	734	0	-	0	984	667	
Stage 1	-	-	-	-	731	-	
Stage 2	-	-	-	-	253	-	
Critical Hdwy	4.1	-	-	-	6.8	6.9	
Critical Hdwy Stg 1	-	-	-	-	5.8	-	
Critical Hdwy Stg 2	-	-	-	-	5.8	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	880	-	-	-	249	406	
Stage 1	-	-	-	-	443	-	
Stage 2	-	-	-	-	772	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	746	-	-	-	170	287	
Mov Cap-2 Maneuver	-	-	-	-	170	-	
Stage 1	-	-	-	-	369	-	
Stage 2	-	-	-	-	634	-	

Approach	NB	SB	NE	
HCM Control Delay, s	0.3	0	22.3	
HCM LOS			С	

Minor Lane/Major Mvmt	NELn1	NBL	NBT	SBT	SBR	
Capacity (veh/h)	249	746	-	-	-	
HCM Lane V/C Ratio	0.165	0.011	-	-	-	
HCM Control Delay (s)	22.3	9.9	0.1	-	-	
HCM Lane LOS	С	А	А	-	-	
HCM 95th %tile Q(veh)	0.6	0	-	-	-	

	≯	-	$\mathbf{\hat{z}}$	•	-	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1		- 4 >			∱1 ≱			4î b	
Volume (veh/h)	81	39	212	95	54	19	139	674	29	11	764	97
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1976	1900	1824	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	81	39	212	95	54	19	139	674	29	11	764	97
Adj No. of Lanes	0	1	1	0	1	0	1	2	0	0	2	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	360	146	338	268	132	33	403	1799	77	100	1599	201
Arrive On Green	0.21	0.21	0.21	0.21	0.21	0.21	0.51	0.51	0.51	0.51	0.51	0.51
Sat Flow, veh/h	987	696	1615	594	633	156	626	3527	152	12	3135	394
Grp Volume(v), veh/h	120	0	212	168	0	0	139	345	358	464	0	408
Grp Sat Flow(s),veh/h/ln	1683	0	1615	1383	0	0	626	1805	1873	1882	0	1659
Q Serve(g_s), s	0.0	0.0	4.7	2.3	0.0	0.0	7.3	4.5	4.5	0.0	0.0	6.3
Cycle Q Clear(g_c), s	2.1	0.0	4.7	4.4	0.0	0.0	13.5	4.5	4.5	6.2 0.02	0.0	6.3
Prop In Lane	0.67 506	٥	1.00 338	0.57 433	0	0.11	1.00	921	0.08 956	0.02 1054	0	0.24 847
Lane Grp Cap(c), veh/h	506 0.24	0 0.00	0.63	433 0.39	0.00	0 0.00	403 0.34	921 0.37	956 0.37	0.44	0 0.00	0.48
V/C Ratio(X)	0.24 1106	0.00	989	1005	0.00	0.00	403	921	956	1054	0.00	0.40 847
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.1	0.00	14.1	13.9	0.00	0.00	10.6	5.8	5.8	6.2	0.00	6.2
Incr Delay (d2), s/veh	0.2	0.0	1.9	0.6	0.0	0.0	2.3	1.2	1.1	1.3	0.0	2.0
Initial Q Delay(d3),s/veh	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.1	0.0	2.2	1.7	0.0	0.0	1.5	2.5	2.6	3.6	0.0	3.3
LnGrp Delay(d),s/veh	13.3	0.0	16.0	14.5	0.0	0.0	13.0	7.0	6.9	7.6	0.0	8.2
LnGrp LOS	B	0.0	B	В	0.0	0.0	В	A	0.5 A	A	0.0	A
Approach Vol, veh/h	0	332	0	<u> </u>	168		0	842			872	
Approach Delay, s/veh		15.1			14.5			8.0			7.9	
Approach LOS		B			В			A			A	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	0	4	U	6	1	8				
Phs Duration (G+Y+Rc), s		25.5		13.7		25.5		13.7				
Change Period (Y+Rc), s		5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s		20.0		24.0		20.0		24.0				
Max Q Clear Time (g_c+I1), s		15.5		6.7		8.3		6.4				
Green Ext Time (p_c), s		2.7		1.6		5.2		1.6				
Intersection Summary												
HCM 2010 Ctrl Delay			9.5									
HCM 2010 LOS			А									

	<	•	1	۲	1	Ļ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	¥		¢γ			4 †			
Volume (vph)	51	101	780	42	100	1081			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	16	12	11	12	12	11			
Total Lost time (s)	5.5		5.5			5.5			
Lane Util. Factor	1.00		0.95			0.95			
Frt	0.91		0.99			1.00			
Flt Protected	0.98		1.00			1.00			
Satd. Flow (prot)	1928		3463			3475			
Flt Permitted	0.98		1.00			0.81			
Satd. Flow (perm)	1928		3463			2811			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00			
Adj. Flow (vph)	51	101	780	42	100	1081			
RTOR Reduction (vph)	87	0	4	0	0	0			
Lane Group Flow (vph)	65	0	818	0	0	1181			
Turn Type	Prot		NA		Perm	NA			
Protected Phases	8		2		1 Onn	6			
Permitted Phases	Ū		L		6	Ū			
Actuated Green, G (s)	6.8		33.0		U	33.0			
Effective Green, g (s)	6.8		33.0			33.0			
Actuated g/C Ratio	0.13		0.65			0.65			
Clearance Time (s)	5.5		5.5			5.5			
Vehicle Extension (s)	3.0		3.0			3.0			
Lane Grp Cap (vph)	258		2249			1826			
v/s Ratio Prot	c0.03		0.24			1020			
v/s Ratio Perm	0.00		0.24			c0.42			
v/c Ratio	0.25		0.36			0.65			
Uniform Delay, d1	19.7		4.1			5.4			
Progression Factor	1.00		1.00			1.00			
Incremental Delay, d2	0.5		0.5			1.8			
Delay (s)	20.2		4.5			7.2			
Level of Service	20.2 C		4.5 A			A			
Approach Delay (s)	20.2		4.5			7.2			
Approach LOS	20.2 C		4.5 A			7.Z A			
	U		A			Λ			
Intersection Summary									
HCM 2000 Control Delay			7.1	Н	CM 2000	Level of Service	e	А	
HCM 2000 Volume to Capa	acity ratio		0.58						
Actuated Cycle Length (s)			50.8		um of lost			11.0	
Intersection Capacity Utilization	ation		78.5%	IC	CU Level of	of Service		D	
Analysis Period (min)			15						
c Critical Lane Group									

c Critical Lane Group

	۶	-	$\mathbf{\hat{z}}$	∢	+	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			ፋጉ			4î b	
Volume (vph)	4	0	8	112	0	35	3	708	56	29	941	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	11	12
Total Lost time (s)		5.0			5.5			5.5			5.5	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frt		0.91			0.97			0.99			1.00	
Flt Protected		0.98			0.96			1.00			1.00	
Satd. Flow (prot)		1701			1771			3451			3484	
Flt Permitted		0.98			0.96			0.95			0.92	
Satd. Flow (perm)		1701			1771			3285			3205	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	4	0	8	112	0	35	3	708	56	29	941	1
RTOR Reduction (vph)	0	12	0	0	109	0	0	6	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	38	0	0	761	0	0	971	0
Turn Type	Split	NA		Split	NA		Perm	NA		Perm	NA	
Protected Phases	4	4		8	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)		0.5			6.7			25.2			25.2	
Effective Green, g (s)		0.5			6.7			25.2			25.2	
Actuated g/C Ratio		0.01			0.14			0.52			0.52	
Clearance Time (s)		5.0			5.5			5.5			5.5	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		17			245			1710			1668	
v/s Ratio Prot		c0.00			c0.02							
v/s Ratio Perm								0.23			c0.30	
v/c Ratio		0.01			0.16			0.44			0.58	
Uniform Delay, d1		23.7			18.4			7.2			8.0	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.2			0.3			0.8			1.5	
Delay (s)		23.9			18.7			8.1			9.5	
Level of Service		С			В			А			А	
Approach Delay (s)		23.9			18.7			8.1			9.5	
Approach LOS		С			В			А			А	
Intersection Summary												
HCM 2000 Control Delay			9.7	Н	CM 2000	Level of S	Service		А			
HCM 2000 Volume to Capacit	ty ratio		0.49									
Actuated Cycle Length (s)			48.4		um of lost	()			16.0			
Intersection Capacity Utilization	on		71.2%	IC	CU Level of	of Service)		С			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

Int Delay, s/veh	0.7						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			-4 †	∱ î,		
Traffic Vol, veh/h	11	65	0	812	1028	0)
Future Vol, veh/h	11	65	0	812	1028	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	•
RT Channelized	-	None	-	None	-	None	ł
Storage Length	0	-	-	-	-	-	
Veh in Median Storage	,# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	11	65	0	812	1028	0	

Major/Minor	Minor2	Ν	/lajor1	Majo	or2				
Conflicting Flow All	1434	514	1028	0	-	0			
Stage 1	1028	-	-	-	-	-			
Stage 2	406	-	-	-	-	-			
Critical Hdwy	6.8	6.9	4.1	-	-	-			
Critical Hdwy Stg 1	5.8	-	-	-	-	-			
Critical Hdwy Stg 2	5.8	-	-	-	-	-			
Follow-up Hdwy	3.5	3.3	2.2	-	-	-			
Pot Cap-1 Maneuver	127	511	683	-	-	-			
Stage 1	310	-	-	-	-	-			
Stage 2	647	-	-	-	-	-			
Platoon blocked, %				-	-	-			
Mov Cap-1 Maneuve		511	683	-	-	-			
Mov Cap-2 Maneuve		-	-	-	-	-			
Stage 1	310	-	-	-	-	-			
Stage 2	647	-	-	-	-	-			

Approach	EB	NB	SB
HCM Control Delay, s	17.9	0	0
HCM LOS	С		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	683	- 355	-	-
HCM Lane V/C Ratio	-	- 0.214	-	-
HCM Control Delay (s)	0	- 17.9	-	-
HCM Lane LOS	А	- C	-	-
HCM 95th %tile Q(veh)	0	- 0.8	-	-

Int Delay, s/veh	0.2						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			-4 †	∱ î,		
Traffic Vol, veh/h	3	7	5	709	1024	2	
Future Vol, veh/h	3	7	5	709	1024	2	
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free	•
RT Channelized	-	None	-	None	-	None	•
Storage Length	0	-	-	-	-	-	
Veh in Median Storage	,# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	3	7	5	709	1024	2	

Major/Minor	Minor2	Ν	/lajor1	Majo	or2					
Conflicting Flow All	1390	513	1026	0	-	0				
Stage 1	1025	-	-	-	-	-				
Stage 2	365	-	-	-	-	-				
Critical Hdwy	6.8	6.9	4.1	-	-	-				
Critical Hdwy Stg 1	5.8	-	-	-	-	-				
Critical Hdwy Stg 2	5.8	-	-	-	-	-				
Follow-up Hdwy	3.5	3.3	2.2	-	-	-				
Pot Cap-1 Maneuver	136	512	685	-	-	-				
Stage 1	312	-	-	-	-	-				
Stage 2	679	-	-	-	-	-				
Platoon blocked, %				-	-	-				
Mov Cap-1 Maneuve		512	685	-	-	-				
Mov Cap-2 Maneuve	r 134	-	-	-	-	-				
Stage 1	308	-	-	-	-	-				
Stage 2	679	-	-	-	-	-				

Approach	EB	NB	SB
HCM Control Delay, s	18.5	0.2	0
HCM LOS	С		

Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)	685	-	277	-	-
HCM Lane V/C Ratio	0.007	-	0.036	-	-
HCM Control Delay (s)	10.3	0.1	18.5	-	-
HCM Lane LOS	В	А	С	-	-
HCM 95th %tile Q(veh)	0	-	0.1	-	-

Int Delay, s/veh	0.1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	{
Lane Configurations	Y			-4 †	- † 1-		
Traffic Vol, veh/h	0	0	6	747	1062	31	1
Future Vol, veh/h	0	0	6	747	1062	31	1
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free	3
RT Channelized	-	None	-	None	-	None	÷
Storage Length	0	-	-	-	-	-	-
Veh in Median Storage	,# 0	-	-	0	0	-	-
Grade, %	0	-	-	0	0	-	-
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	0	0	0	0	0	0)
Mvmt Flow	0	0	6	747	1062	31	l

Major/Minor	Minor2	ľ	Major1	Maj	or2					
Conflicting Flow All	1464	547	1093	0	-	0				
Stage 1	1078	-	-	-	-	-				
Stage 2	386	-	-	-	-	-				
Critical Hdwy	6.8	6.9	4.1	-	-	-				
Critical Hdwy Stg 1	5.8	-	-	-	-	-				
Critical Hdwy Stg 2	5.8	-	-	-	-	-				
Follow-up Hdwy	3.5	3.3	2.2	-	-	-				
Pot Cap-1 Maneuver	121	486	646	-	-	-				
Stage 1	292	-	-	-	-	-				
Stage 2	662	-	-	-	-	-				
Platoon blocked, %				-	-	-				
Mov Cap-1 Maneuve	r 119	486	646	-	-	-				
Mov Cap-2 Maneuve	r 119	-	-	-	-	-				
Stage 1	287	-	-	-	-	-				
Stage 2	662	-	-	-	-	-				

Approach	EB	NB	SB
HCM Control Delay, s	0	0.2	0
HCM LOS	А		

Minor Lane/Major Mvmt	NBL	NBT E	3Ln1	SBT	SBR
Capacity (veh/h)	646	-	-	-	-
HCM Lane V/C Ratio	0.009	-	-	-	-
HCM Control Delay (s)	10.6	0.1	0	-	-
HCM Lane LOS	В	А	Α	-	-
HCM 95th %tile Q(veh)	0	-	-	-	-

Int Delay, s/veh	1.8					
Movement	NBL	NBT	SBT	SBR	NEL	NER
Lane Configurations		-4 †	_ ≜ î≽		Y	
Traffic Vol, veh/h	61	700	1005	62	31	21
Future Vol, veh/h	61	700	1005	62	31	21
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	61	700	1005	62	31	21

Major/Minor	Major1	Maj	or2	Ν	/linor2		
Conflicting Flow All	1067	0	-	0	1508	534	
Stage 1	-	-	-	-	1036	-	
Stage 2	-	-	-	-	472	-	
Critical Hdwy	4.1	-	-	-	6.8	6.9	
Critical Hdwy Stg 1	-	-	-	-	5.8	-	
Critical Hdwy Stg 2	-	-	-	-	5.8	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	661	-	-	-	114	496	
Stage 1	-	-	-	-	308	-	
Stage 2	-	-	-	-	600	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuve	r 661	-	-	-	97	496	
Mov Cap-2 Maneuve	r -	-	-	-	97	-	
Stage 1	-	-	-	-	261	-	
Stage 2	-	-	-	-	600	-	

Approach	NB	SB	NE
HCM Control Delay, s	1.5	0	43.5
HCM LOS			Е

Minor Lane/Major Mvmt	NELn1	NBL	NBT	SBT	SBR
Capacity (veh/h)	144	661	-	-	-
HCM Lane V/C Ratio	0.361	0.092	-	-	-
HCM Control Delay (s)	43.5	11	0.7	-	-
HCM Lane LOS	E	В	Α	-	-
HCM 95th %tile Q(veh)	1.5	0.3	-	-	-

	≯	-	$\mathbf{\hat{z}}$	∢	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1		- 4 >			∱1 ≱			4î Þ	
Volume (veh/h)	76	26	127	49	35	15	112	643	52	9	561	61
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1976	1900	1824	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	76	26	127	49	35	15	112	643	52	9	561	61
Adj No. of Lanes	0	1	1	0	1	0	1	2	0	0	2	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	370	105	324	254	162	50	507	1746	141	102	1648	177
Arrive On Green	0.20	0.20	0.20	0.20	0.20	0.20	0.52	0.52	0.52	0.52	0.52	0.52
Sat Flow, veh/h	1040	522	1615	577	811	248	782	3383	273	12	3194	343
Grp Volume(v), veh/h	102	0	127	99	0	0	112	343	352	334	0	297
Grp Sat Flow(s),veh/h/ln	1562	0	1615	1635	0	0	782	1805	1852	1881	0	1668
Q Serve(g_s), s	0.2	0.0	2.6	0.0	0.0	0.0	3.8	4.4	4.4	0.0	0.0	4.1
Cycle Q Clear(g_c), s	1.8	0.0	2.6	1.7	0.0	0.0	7.9	4.4	4.4	4.0	0.0	4.1
Prop In Lane	0.75	0	1.00	0.49	0	0.15	1.00	004	0.15	0.03	0	0.21
Lane Grp Cap(c), veh/h	475	0	324	466	0	0	507	931	955	1066	0	861
V/C Ratio(X)	0.21	0.00	0.39	0.21 1112	0.00	0.00	0.22	0.37	0.37	0.31 1066	0.00	0.34
Avail Cap(c_a), veh/h	1095	0 1.00	1000 1.00	1.00	0 1.00	0 1.00	507 1.00	931 1.00	955 1.00	1.00	0 1.00	861 1.00
HCM Platoon Ratio	1.00 1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00
Upstream Filter(I) Uniform Delay (d), s/veh	13.1	0.00	13.5	13.1	0.00	0.00	7.8	5.6	5.6	5.5	0.00	5.5
Incr Delay (d2), s/veh	0.2	0.0	0.8	0.2	0.0	0.0	1.0	5.0 1.1	5.0 1.1	5.5 0.8	0.0	5.5 1.1
Initial Q Delay(d3),s/veh	0.2	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	0.0	1.2	0.0	0.0	0.0	1.0	2.4	2.4	2.3	0.0	2.1
LnGrp Delay(d),s/veh	13.3	0.0	14.2	13.3	0.0	0.0	8.8	2.4 6.7	2.4 6.7	6.3	0.0	6.6
LnGrp LOS	13.3 B	0.0	14.2 B	13.3 B	0.0	0.0	0.0 A	0.7 A	0.7 A	0.5 A	0.0	0.0 A
Approach Vol, veh/h	U	229	U	D	99		Λ	807	Λ	Λ	631	
Approach Delay, s/veh		13.8			13.3			7.0			6.4	
Approach LOS		13.0 B			13.3 B			7.0 A			0.4 A	
			0			•	-				~	
Timer	1	2	3	4	5	<u>6</u>	7	8				
Assigned Phs Phs Duration (G+Y+Rc), s												_
· · · · · · · · · · · · · · · · · · ·		25.5 5.5		13.3 5.5		25.5 5.5		13.3 5.5				
Change Period (Y+Rc), s				24.0		20.0		24.0				
Max Green Setting (Gmax), s Max Q Clear Time (g_c+I1), s		20.0 9.9		24.0 4.6		20.0 6.1		24.0 3.7				
Green Ext Time (p_c), s		9.9 3.9		4.0 0.9		6.1 4.5		3.7 1.0				
. ,		3.9		0.9		4.0		1.0				
Intersection Summary												
HCM 2010 Ctrl Delay			8.0									
HCM 2010 LOS			А									

	4	•	t	*	1	Ŧ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	¥		¢γ			41			
Volume (vph)	38	63	763	33	49	695			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	16	12	11	12	12	11			
Total Lost time (s)	5.5		5.5			5.5			
Lane Util. Factor	1.00		0.95			0.95			
Frt	0.92		0.99			1.00			
Flt Protected	0.98		1.00			1.00			
Satd. Flow (prot)	1936		3468			3478			
Flt Permitted	0.98		1.00			0.87			
Satd. Flow (perm)	1936		3468			3029			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00			
Adj. Flow (vph)	38	63	763	33	49	695			
RTOR Reduction (vph)	55	03	703	0	49	095			
Lane Group Flow (vph)	55 46	0	5 793	0	0	744			
1 (17		U		U					
Turn Type	Prot		NA		Perm	NA			
Protected Phases	8		2		~	6			
Permitted Phases	0.0		22.0		6	22.0			
Actuated Green, G (s)	6.6		33.8			33.8			
Effective Green, g (s)	6.6		33.8			33.8			
Actuated g/C Ratio	0.13		0.66			0.66			
Clearance Time (s)	5.5		5.5			5.5			
Vehicle Extension (s)	3.0		3.0			3.0			
Lane Grp Cap (vph)	248		2280			1991			
v/s Ratio Prot	c0.02		0.23						
v/s Ratio Perm						c0.25			
v/c Ratio	0.19		0.35			0.37			
Uniform Delay, d1	20.0		3.9			4.0			
Progression Factor	1.00		1.00			1.00			
Incremental Delay, d2	0.4		0.4			0.5			
Delay (s)	20.4		4.3			4.5			
Level of Service	С		А			А			
Approach Delay (s)	20.4		4.3			4.5			
Approach LOS	С		А			А			
Intersection Summary									
HCM 2000 Control Delay			5.4	Н	CM 2000	Level of Servic	е	А	
HCM 2000 Volume to Capa	acity ratio		0.34						
Actuated Cycle Length (s)			51.4	S	um of lost	t time (s)		11.0	
Intersection Capacity Utilization	ation		63.2%	IC	CU Level o	of Service		В	
Analysis Period (min)			15						
c Critical Lane Group									

c Critical Lane Group

	≯	-	$\mathbf{\hat{z}}$	∢	←	•	•	Ť	۲	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			र्स कि			4îb	
Volume (vph)	4	0	8	47	0	13	3	832	86	12	680	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	11	12
Total Lost time (s)		5.0			5.5			5.5			5.5	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frt		0.91			0.97			0.99			1.00	
Flt Protected		0.98			0.96			1.00			1.00	
Satd. Flow (prot)		1701			1775			3440			3486	
Flt Permitted		0.98			0.96			0.95			0.94	
Satd. Flow (perm)		1701			1775			3280			3270	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	4	0	8	47	0	13	3	832	86	12	680	1
RTOR Reduction (vph)	0	12	0	0	56	0	0	7	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	4	0	0	914	0	0	693	0
Turn Type	Split	NA		Split	NA		Perm	NA		Perm	NA	
Protected Phases	4	4		8	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)		0.5			3.1			30.8			30.8	
Effective Green, g (s)		0.5			3.1			30.8			30.8	
Actuated g/C Ratio		0.01			0.06			0.61			0.61	
Clearance Time (s)		5.0			5.5			5.5			5.5	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		16			109			2004			1998	
v/s Ratio Prot		c0.00			c0.00							
v/s Ratio Perm								c0.28			0.21	
v/c Ratio		0.01			0.03			0.46			0.35	
Uniform Delay, d1		24.7			22.2			5.3			4.8	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.2			0.1			0.8			0.5	
Delay (s)		24.9			22.4			6.0			5.3	
Level of Service		С			С			А			А	
Approach Delay (s)		24.9			22.4			6.0			5.3	
Approach LOS		С			С			А			А	
Intersection Summary												
HCM 2000 Control Delay			6.5	Н	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capaci	ity ratio		0.41									
Actuated Cycle Length (s)			50.4	S	um of lost	t time (s)			16.0			
Intersection Capacity Utilizati	on		44.1%	IC	CU Level o	of Service	;		А			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

Int Delay, s/veh	0.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			-4 †	- † 1-	
Traffic Vol, veh/h	14	27	0	770	700	0
Future Vol, veh/h	14	27	0	770	700	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	14	27	0	770	700	0

Major/Minor	Minor2	Ν	1ajor1	Majo	or2	
Conflicting Flow All	1085	350	700	0	-	0
Stage 1	700	-	-	-	-	-
Stage 2	385	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	214	652	906	-	-	-
Stage 1	459	-	-	-	-	-
Stage 2	663	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve	r 214	652	906	-	-	-
Mov Cap-2 Maneuve	r 214	-	-	-	-	-
Stage 1	459	-	-	-	-	-
Stage 2	663	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	15.5	0	0
HCM LOS	С		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	906	- 384	-	-	
HCM Lane V/C Ratio	-	- 0.107	-	-	
HCM Control Delay (s)	0	- 15.5	-	-	
HCM Lane LOS	А	- C	-	-	
HCM 95th %tile Q(veh)	0	- 0.4	-	-	

Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			- 4 ↑	- † 1-	
Traffic Vol, veh/h	1	2	2	753	704	2
Future Vol, veh/h	1	2	2	753	704	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	1	2	2	753	704	2

Major/Minor	Minor2	Ν	1ajor1	Majo	or2	
Conflicting Flow All	1086	353	706	0	-	0
Stage 1	705	-	-	-	-	-
Stage 2	381	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	214	649	902	-	-	-
Stage 1	456	-	-	-	-	-
Stage 2	666	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve	r 213	649	902	-	-	-
Mov Cap-2 Maneuve	r 213	-	-	-	-	-
Stage 1	454	-	-	-	-	-
Stage 2	666	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	14.4	0	0
HCM LOS	В		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	902	- 386	-	-	
HCM Lane V/C Ratio	0.002	- 0.008	-	-	
HCM Control Delay (s)	9	0 14.4	-	-	
HCM Lane LOS	A	A B	-	-	
HCM 95th %tile Q(veh)	0	- 0	-	-	

Int Delay, s/veh	0.5						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	ł
Lane Configurations	- Y			-4 †	_ ≜ î≽		
Traffic Vol, veh/h	0	0	46	754	723	45	5
Future Vol, veh/h	0	0	46	754	723	45	5
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free	;
RT Channelized	-	None	-	None	-	None	;
Storage Length	0	-	-	-	-	-	
Veh in Median Storage	,# 0	-	-	0	0	-	-
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	0	0	0	0	0	0)
Mvmt Flow	0	0	46	754	723	45	5

Major/Minor	Minor2	Ν	1ajor1	Majo	or2	
Conflicting Flow All	1215	384	768	0	-	0
Stage 1	746	-	-	-	-	-
Stage 2	469	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	177	620	855	-	-	-
Stage 1	435	-	-	-	-	-
Stage 2	602	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve		620	855	-	-	-
Mov Cap-2 Maneuve	r 161	-	-	-	-	-
Stage 1	395	-	-	-	-	-
Stage 2	602	-	-	-	-	-

Minor Lane/Major Mvmt	NBL	NBT E	BLn1	SBT	SBR
Capacity (veh/h)	855	-	-	-	-
HCM Lane V/C Ratio	0.054	-	-	-	-
HCM Control Delay (s)	9.5	0.4	0	-	-
HCM Lane LOS	А	А	А	-	-
HCM 95th %tile Q(veh)	0.2	-	-	-	-

Int Delay, s/veh	0.4						
Movement	NBL	NBT	SBT	SBR	NEL	NER	
Lane Configurations		- 4 ↑	∱î ≽		Y		
Traffic Vol, veh/h	22	812	744	21	3	15	
Future Vol, veh/h	22	812	744	21	3	15	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage	,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	22	812	744	21	3	15	

Major/Minor	Major1	Мај	jor2	Ν	/linor2		
Conflicting Flow All	765	0	-	0	1205	383	
Stage 1	-	-	-	-	755	-	
Stage 2	-	-	-	-	450	-	
Critical Hdwy	4.1	-	-	-	6.8	6.9	
Critical Hdwy Stg 1	-	-	-	-	5.8	-	
Critical Hdwy Stg 2	-	-	-	-	5.8	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	857	-	-	-	179	621	
Stage 1	-	-	-	-	430	-	
Stage 2	-	-	-	-	615	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuve		-	-	-	171	621	
Mov Cap-2 Maneuve	er -	-	-	-	171	-	
Stage 1	-	-	-	-	410	-	
Stage 2	-	-	-	-	615	-	

Approach	NB	SB	NE
HCM Control Delay, s	0.4	0	13.7
HCM LOS			В

Minor Lane/Major Mvmt	NELn1	NBL	NBT	SBT	SBR
Capacity (veh/h)	432	857	-	-	-
HCM Lane V/C Ratio	0.042	0.026	-	-	-
HCM Control Delay (s)	13.7	9.3	0.2	-	-
HCM Lane LOS	В	А	Α	-	-
HCM 95th %tile Q(veh)	0.1	0.1	-	-	-

	≯	-	\mathbf{F}	4	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- सी	1		- 4 >			∱ β			4î b	
Volume (veh/h)	43	21	100	16	10	2	53	376	23	1	421	39
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.94		0.94	0.95		0.94	0.91		0.82	0.90		0.82
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1900	1900	1900	1976	1900	1824	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	43	21	100	16	10	2	53	376	23	1	421	39
Adj No. of Lanes	0	1	1	0	1	0	1	2	0	0	2	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	471	208	560	402	235	40	408	1386	84	74	1304	119
Arrive On Green	0.37	0.37	0.37	0.37	0.37	0.37	0.41	0.41	0.41	0.41	0.41	0.41
Sat Flow, veh/h	943	563	1517	778	635	109	830	3407	207	1	3205	293
Grp Volume(v), veh/h	64	0	100	28	0	0	53	198	201	248	0	213
Grp Sat Flow(s),veh/h/ln	1506	0	1517	1521	0	0	830	1805	1809	1899	0	1599
Q Serve(g_s), s	0.1	0.0	2.2	0.0	0.0	0.0	2.3	3.6	3.7	0.0	0.0	4.5
Cycle Q Clear(g_c), s	1.1	0.0	2.2	0.5	0.0	0.0	6.8	3.6	3.7	4.4	0.0	4.5
Prop In Lane	0.67	•	1.00	0.57	•	0.07	1.00	70.4	0.11	0.00	•	0.18
Lane Grp Cap(c), veh/h	679	0	560	677	0	0	408	734	736	846	0	651
V/C Ratio(X)	0.09	0.00	0.18	0.04	0.00	0.00	0.13	0.27	0.27	0.29	0.00	0.33
Avail Cap(c_a), veh/h	855	0	740	853	0	0	408	734	736	846	0	651
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	10.1	0.0	10.5	9.9	0.0	0.0	12.3	9.7	9.7	9.9	0.0	10.0
Incr Delay (d2), s/veh	0.1	0.0	0.2	0.0	0.0	0.0	0.7	0.9	0.9	0.9	0.0	1.3
Initial Q Delay(d3),s/veh	0.0 0.6	0.0	0.0 0.9	0.0 0.2	0.0 0.0	0.0 0.0	0.0 0.6	0.0 1.9	0.0 2.0	0.0 2.5	0.0 0.0	0.0 2.2
%ile BackOfQ(50%),veh/In	0.6 10.2	0.0	10.6	0.2 9.9	0.0	0.0	13.0	10.6	2.0	2.5 10.8	0.0	11.3
LnGrp Delay(d),s/veh LnGrp LOS	10.2 B	0.0	10.6 B	9.9 A	0.0	0.0	13.0 B	10.6 B	10.7 B	10.0 B	0.0	B
Approach Vol, veh/h	D	164	D	A	28		D	452	D	D	461	D
• •					20 9.9							
Approach Delay, s/veh Approach LOS		10.4 B			9.9 A			10.9 B			11.1 B	
			•				_				D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6		8				_
Phs Duration (G+Y+Rc), s		25.5		23.7		25.5		23.7				
Change Period (Y+Rc), s		5.5		5.5		5.5		5.5				
Max Green Setting (Gmax), s		20.0		24.0		20.0		24.0				
Max Q Clear Time (g_c+I1), s		8.8		4.2		6.5		2.5				
Green Ext Time (p_c), s		2.4		0.5		2.6		0.6				
Intersection Summary			40.0									
HCM 2010 Ctrl Delay			10.9									
HCM 2010 LOS			В									

	4	•	1	*	1	ţ			
Novement	WBL	WBR	NBT	NBR	SBL	SBT			
ane Configurations	¥		≜ †₽			4 †			
/olume (vph)	29	28	437	16	29	563			
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
ane Width	16	12	11	12	12	11			
otal Lost time (s)	5.5		5.5			5.5			
ane Util. Factor	1.00		0.95			0.95			
rpb, ped/bikes	0.93		1.00			1.00			
Flpb, ped/bikes	1.00		1.00			1.00			
Frt	0.93		0.99			1.00			
Fit Protected	0.98		1.00			1.00			
Satd. Flow (prot)	1825		3456			3469			
Fit Permitted	0.98		1.00			0.92			
Satd. Flow (perm)	1825		3456			3212			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00			
Adj. Flow (vph)	29	28	437	1.00	29	563			
RTOR Reduction (vph)	26	0	437	0	0	0			
ane Group Flow (vph)	31	0	451	0	0	592			
Confl. Peds. (#/hr)	150	200	401	150	200	552			
Furn Type	Prot	200	NA	150	Perm	NA			
Protected Phases	8		2		Feilii	6			
Permitted Phases	0		Z		6	U			
Actuated Green, G (s)	3.3		38.5		0	38.5			
Effective Green, g (s)	3.3		38.5			38.5			
Actuated g/C Ratio	0.06		0.73			0.73			
Clearance Time (s)	5.5		5.5			5.5			
/ehicle Extension (s)	3.0		3.0			3.0			
ane Grp Cap (vph)	114		2520			2342			
/s Ratio Prot	c0.02		0.13			.0.40			
/s Ratio Perm	0.07		0.40			c0.18			
/c Ratio	0.27		0.18			0.25			
Jniform Delay, d1	23.6		2.2			2.4			
Progression Factor	1.00		1.00			1.00			
ncremental Delay, d2	1.3		0.2			0.3			
Delay (s)	24.9		2.4			2.6			
evel of Service	C		A			A			
Approach Delay (s)	24.9		2.4			2.6			
Approach LOS	С		A			A			
ntersection Summary									
ICM 2000 Control Delay			3.7	Н	CM 2000	Level of Servic	9	Α	
ICM 2000 Volume to Capa	acity ratio		0.25						
Actuated Cycle Length (s)			52.8		um of lost			11.0	
ntersection Capacity Utiliza	ation		66.2%	IC	CU Level o	of Service		С	
Analysis Period (min)			15						

	۶	-	$\mathbf{\hat{z}}$	∢	←	•	1	Ť	۲	5	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			4î b			ብጉ	
Volume (vph)	3	0	5	36	0	9	8	456	62	6	585	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	12	11	12	12	11	12
Total Lost time (s)		5.0			5.5			5.5			5.5	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frpb, ped/bikes		0.80			0.99			0.99			1.00	
Flpb, ped/bikes		0.99			1.00			1.00			1.00	
Frt		0.92			0.97			0.98			1.00	
Flt Protected		0.98			0.96			1.00			1.00	
Satd. Flow (prot)		1350			1762			3391			3485	
Flt Permitted		0.98			0.96			0.95			0.95	
Satd. Flow (perm)		1350			1762			3214			3315	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	3	0	5	36	0	9	8	456	62	6	585	1
RTOR Reduction (vph)	0	8	0	0	44	0	0	9	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	1	0	0	517	0	0	592	0
Confl. Peds. (#/hr)	50		25	25		50	175		75	75		175
Turn Type	Split	NA		Split	NA		Perm	NA		Perm	NA	
Protected Phases	4	4		8	8			2			6	
Permitted Phases							2			6		
Actuated Green, G (s)		0.5			1.4			32.6			32.6	
Effective Green, g (s)		0.5			1.4			32.6			32.6	
Actuated g/C Ratio		0.01			0.03			0.65			0.65	
Clearance Time (s)		5.0			5.5			5.5			5.5	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		13			48			2074			2139	
v/s Ratio Prot		c0.00			c0.00							
v/s Ratio Perm								0.16			c0.18	
v/c Ratio		0.01			0.03			0.25			0.28	
Uniform Delay, d1		24.8			23.9			3.8			3.9	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.2			0.2			0.3			0.3	
Delay (s)		24.9			24.1			4.1			4.2	
Level of Service		С			С			A			А	
Approach Delay (s)		24.9			24.1			4.1			4.2	
Approach LOS		С			С			A			A	
Intersection Summary												
HCM 2000 Control Delay			5.0	Н	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capac	ity ratio		0.26									
Actuated Cycle Length (s)			50.5		um of lost				16.0			
Intersection Capacity Utilizat	ion		47.6%	IC	CU Level of	of Service	1		А			
Analysis Period (min)			15									
c Critical Lane Group												

	.		
Int	Delay	s/veh	

Int Delay, s/veh	1.2						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	- ¥			- 4 ↑	- † 12		
Traffic Vol, veh/h	17	32	0	475	551	0)
Future Vol, veh/h	17	32	0	475	551	0	
Conflicting Peds, #/hr	175	175	175	0	0	175	;
Sign Control	Stop	Stop	Free	Free	Free	Free)
RT Channelized	-	None	-	None	-	None	•
Storage Length	0	-	-	-	-	-	
Veh in Median Storage	, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	17	32	0	475	551	0	

Major/Minor	Minor2	Ν	1ajor1	Maj	or2	
Conflicting Flow All	1139	626	726	0	-	0
Stage 1	726	-	-	-	-	-
Stage 2	413	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	198	432	886	-	-	-
Stage 1	445	-	-	-	-	-
Stage 2	642	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve		320	757	-	-	-
Mov Cap-2 Maneuve	r 144	-	-	-	-	-
Stage 1	380	-	-	-	-	-
Stage 2	548	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	25.4	0	0
HCM LOS	D		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	757	- 225	-	-	
HCM Lane V/C Ratio	-	- 0.218	-	-	
HCM Control Delay (s)	0	- 25.4	-	-	
HCM Lane LOS	А	- D	-	-	
HCM 95th %tile Q(veh)	0	- 0.8	-	-	

Int Delay, s/veh	0.2						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			-4 †	- † 1,-		
Traffic Vol, veh/h	3	4	0	453	540	4	
Future Vol, veh/h	3	4	0	453	540	4	
Conflicting Peds, #/hr	225	200	200	0	0	225	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage	,# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	3	4	0	453	540	4	

Major/Minor	Minor2	Ν	1ajor1	Maj	or2	
Conflicting Flow All	1219	697	769	0	-	0
Stage 1	767	-	-	-	-	-
Stage 2	452	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	176	388	854	-	-	-
Stage 1	424	-	-	-	-	-
Stage 2	614	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	r 116	267	694	-	-	-
Mov Cap-2 Maneuver	r 116	-	-	-	-	-
Stage 1	345	-	-	-	-	-
Stage 2	499	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	26.9	0	0
HCM LOS	D		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	694	- 171	-	-
HCM Lane V/C Ratio	-	- 0.041	-	-
HCM Control Delay (s)	0	- 26.9	-	-
HCM Lane LOS	Α	- D	-	-
HCM 95th %tile Q(veh)	0	- 0.1	-	-

Int Delay, s/veh	0.1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	l
Lane Configurations	Y			-4 †	∱ î,		
Traffic Vol, veh/h	0	0	6	457	537	51	
Future Vol, veh/h	0	0	6	457	537	51	
Conflicting Peds, #/hr	225	225	225	0	0	225	;
Sign Control	Stop	Stop	Free	Free	Free	Free	;
RT Channelized	-	None	-	None	-	None	,
Storage Length	0	-	-	-	-	-	
Veh in Median Storage,	# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	0	0	0	0	0	0	1
Mvmt Flow	0	0	6	457	537	51	

Major/Minor	Minor2	Ν	/lajor1	Majo	or2	
Conflicting Flow All	1254	744	813	0	-	0
Stage 1	788	-	-	-	-	-
Stage 2	466	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	167	362	823	-	-	-
Stage 1	414	-	-	-	-	-
Stage 2	604	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuve		244	669	-	-	-
Mov Cap-2 Maneuve	r 109	-	-	-	-	-
Stage 1	332	-	-	-	-	-
Stage 2	491	-	-	-	-	-

Minor Lane/Major Mvmt	NBL	NBT EI	3Ln1	SBT	SBR
Capacity (veh/h)	669	-	-	-	-
HCM Lane V/C Ratio	0.009	-	-	-	-
HCM Control Delay (s)	10.4	0.1	0	-	-
HCM Lane LOS	В	А	А	-	-
HCM 95th %tile Q(veh)	0	-	-	-	-

Int Delay, s/veh	1.1						
Movement	NBL	NBT	SBT	SBR	NEL	NER	
Lane Configurations		- 4 ↑	- † 1-		Y		
Traffic Vol, veh/h	8	475	539	6	9	32)
Future Vol, veh/h	8	475	539	6	9	32)
Conflicting Peds, #/hr	200	0	0	200	200	200)
Sign Control	Free	Free	Free	Free	Stop	Stop)
RT Channelized	-	None	-	None	-	None	;
Storage Length	-	-	-	-	0	-	
Veh in Median Storage	, # -	0	0	-	0	-	-
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	0	0	0	0	0	0)
Mvmt Flow	8	475	539	6	9	32)

Major/Minor	Major1	Мај	or2	Ν	/linor2	
Conflicting Flow All	745	0	-	0	1196	673
Stage 1	-	-	-	-	742	-
Stage 2	-	-	-	-	454	-
Critical Hdwy	4.1	-	-	-	6.8	6.9
Critical Hdwy Stg 1	-	-	-	-	5.8	-
Critical Hdwy Stg 2	-	-	-	-	5.8	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	872	-	-	-	182	402
Stage 1	-	-	-	-	437	-
Stage 2	-	-	-	-	612	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuve	r 727	-	-	-	124	284
Mov Cap-2 Maneuve	r -	-	-	-	124	-
Stage 1	-	-	-	-	359	-
Stage 2	-	-	-	-	510	-

Approach	NB	SB	NE
HCM Control Delay, s	0.3	0	25
HCM LOS			D

Minor Lane/Major Mvmt	NELn1	NBL	NBT	SBT	SBR
Capacity (veh/h)	221	727	-	-	-
HCM Lane V/C Ratio	0.186	0.011	-	-	-
HCM Control Delay (s)	25	10	0.1	-	-
HCM Lane LOS	D	В	Α	-	-
HCM 95th %tile Q(veh)	0.7	0	-	-	-